case, because they apply to any choice for the distribution $p(\mathbf{x}, \mathbf{t})$, so long as both the training and the test examples are drawn (independently) from the same distribution, and for any choice for the function $\mathbf{f}(\mathbf{x})$ so long as it belongs to \mathcal{F}. In real-world applications of machine learning, we deal with distributions that have significant regularity, for example in which large regions of input space carry the same class label. As a consequence of the lack of any assumptions about the form of the distribution, the PAC bounds are very conservative, in other words they strongly over-estimate the size of data sets required to achieve a given generalization performance. For this reason, PAC bounds have found few, if any, practical applications.

One attempt to improve the tightness of the PAC bounds is the PAC-Bayesian framework (McAllester, 2003), which considers a distribution over the space \mathcal{F} of functions, somewhat analogous to the prior in a Bayesian treatment. This still considers any possible choice for $p(\mathbf{x}, \mathbf{t})$, and so although the bounds are tighter, they are still very conservative.

7.2. Relevance Vector Machines

Support vector machines have been used in a variety of classification and regression applications. Nevertheless, they suffer from a number of limitations, several of which have been highlighted already in this chapter. In particular, the outputs of an SVM represent decisions rather than posterior probabilities. Also, the SVM was originally formulated for two classes, and the extension to $K>2$ classes is problematic. There is a complexity parameter C, or ν (as well as a parameter ϵ in the case of regression), that must be found using a hold-out method such as cross-validation. Finally, predictions are expressed as linear combinations of kernel functions that are centred on training data points and that are required to be positive definite.

The relevance vector machine or RVM (Tipping, 2001) is a Bayesian sparse kernel technique for regression and classification that shares many of the characteristics of the SVM whilst avoiding its principal limitations. Additionally, it typically leads to much sparser models resulting in correspondingly faster performance on test data whilst maintaining comparable generalization error.

In contrast to the SVM we shall find it more convenient to introduce the regression form of the RVM first and then consider the extension to classification tasks.

7.2.1 RVM for regression

The relevance vector machine for regression is a linear model of the form studied in Chapter 3 but with a modified prior that results in sparse solutions. The model defines a conditional distribution for a real-valued target variable t, given an input vector \mathbf{x}, which takes the form

$$
\begin{equation*}
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}), \beta^{-1}\right) \tag{7.76}
\end{equation*}
$$

where $\beta=\sigma^{-2}$ is the noise precision (inverse noise variance), and the mean is given by a linear model of the form

$$
\begin{equation*}
y(\mathbf{x})=\sum_{i=1}^{M} w_{i} \phi_{i}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) \tag{7.77}
\end{equation*}
$$

with fixed nonlinear basis functions $\phi_{i}(\mathbf{x})$, which will typically include a constant term so that the corresponding weight parameter represents a 'bias'.

The relevance vector machine is a specific instance of this model, which is intended to mirror the structure of the support vector machine. In particular, the basis functions are given by kernels, with one kernel associated with each of the data points from the training set. The general expression (7.77) then takes the SVM-like form

$$
\begin{equation*}
y(\mathbf{x})=\sum_{n=1}^{N} w_{n} k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b \tag{7.78}
\end{equation*}
$$

where b is a bias parameter. The number of parameters in this case is $M=N+1$, and $y(\mathbf{x})$ has the same form as the predictive model (7.64) for the SVM, except that the coefficients a_{n} are here denoted w_{n}. It should be emphasized that the subsequent analysis is valid for arbitrary choices of basis function, and for generality we shall work with the form (7.77). In contrast to the SVM, there is no restriction to positivedefinite kernels, nor are the basis functions tied in either number or location to the training data points.

Suppose we are given a set of N observations of the input vector \mathbf{x}, which we denote collectively by a data matrix \mathbf{X} whose $n^{\text {th }}$ row is $\mathbf{x}_{n}^{\mathrm{T}}$ with $n=1, \ldots, N$. The corresponding target values are given by $\mathbf{t}=\left(t_{1}, \ldots, t_{N}\right)^{\mathrm{T}}$. Thus, the likelihood function is given by

$$
\begin{equation*}
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}, \beta^{-1}\right) . \tag{7.79}
\end{equation*}
$$

Next we introduce a prior distribution over the parameter vector \mathbf{w} and as in Chapter 3, we shall consider a zero-mean Gaussian prior. However, the key difference in the RVM is that we introduce a separate hyperparameter α_{i} for each of the weight parameters w_{i} instead of a single shared hyperparameter. Thus the weight prior takes the form

$$
\begin{equation*}
p(\mathbf{w} \mid \boldsymbol{\alpha})=\prod_{i=1}^{M} \mathcal{N}\left(w_{i} \mid 0, \alpha_{i}^{-1}\right) \tag{7.80}
\end{equation*}
$$

where α_{i} represents the precision of the corresponding parameter w_{i}, and $\boldsymbol{\alpha}$ denotes $\left(\alpha_{1}, \ldots, \alpha_{M}\right)^{\mathrm{T}}$. We shall see that, when we maximize the evidence with respect to these hyperparameters, a significant proportion of them go to infinity, and the corresponding weight parameters have posterior distributions that are concentrated at zero. The basis functions associated with these parameters therefore play no role
in the predictions made by the model and so are effectively pruned out, resulting in a sparse model.

Using the result (3.49) for linear regression models, we see that the posterior distribution for the weights is again Gaussian and takes the form

$$
\begin{equation*}
p(\mathbf{w} \mid \mathbf{t}, \mathbf{X}, \boldsymbol{\alpha}, \beta)=\mathcal{N}(\mathbf{w} \mid \mathbf{m}, \boldsymbol{\Sigma}) \tag{7.81}
\end{equation*}
$$

where the mean and covariance are given by

$$
\begin{align*}
\mathbf{m} & =\beta \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} \tag{7.82}\\
\mathbf{\Sigma} & =\left(\mathbf{A}+\beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \tag{7.83}
\end{align*}
$$

where $\boldsymbol{\Phi}$ is the $N \times M$ design matrix with elements $\Phi_{n i}=\phi_{i}\left(\mathbf{x}_{n}\right)$, and $\mathbf{A}=$ $\operatorname{diag}\left(\alpha_{i}\right)$. Note that in the specific case of the model (7.78), we have $\boldsymbol{\Phi}=\mathbf{K}$, where \mathbf{K} is the symmetric $(N+1) \times(N+1)$ kernel matrix with elements $k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$.

The values of α and β are determined using type- 2 maximum likelihood, also

Section 3.5

Exercise 7.10

Exercise 7.12

Section 3.5.3 known as the evidence approximation, in which we maximize the marginal likelihood function obtained by integrating out the weight parameters

$$
\begin{equation*}
p(\mathbf{t} \mid \mathbf{X}, \boldsymbol{\alpha}, \beta)=\int p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w} \mid \boldsymbol{\alpha}) \mathrm{d} \mathbf{w} \tag{7.84}
\end{equation*}
$$

Because this represents the convolution of two Gaussians, it is readily evaluated to give the log marginal likelihood in the form

$$
\begin{align*}
\ln p(\mathbf{t} \mid \mathbf{X}, \boldsymbol{\alpha}, \beta) & =\ln \mathcal{N}(\mathbf{t} \mid \mathbf{0}, \mathbf{C}) \\
& =-\frac{1}{2}\left\{N \ln (2 \pi)+\ln |\mathbf{C}|+\mathbf{t}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{t}\right\} \tag{7.85}
\end{align*}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{N}\right)^{\mathrm{T}}$, and we have defined the $N \times N$ matrix \mathbf{C} given by

$$
\begin{equation*}
\mathbf{C}=\beta^{-1} \mathbf{I}+\boldsymbol{\Phi} \mathbf{A}^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \tag{7.86}
\end{equation*}
$$

Our goal is now to maximize (7.85) with respect to the hyperparameters α and β. This requires only a small modification to the results obtained in Section 3.5 for the evidence approximation in the linear regression model. Again, we can identify two approaches. In the first, we simply set the required derivatives of the marginal likelihood to zero and obtain the following re-estimation equations

$$
\begin{align*}
\alpha_{i}^{\text {new }} & =\frac{\gamma_{i}}{m_{i}^{2}} \tag{7.87}\\
\left(\beta^{\text {new }}\right)^{-1} & =\frac{\|\mathbf{t}-\boldsymbol{\Phi} \mathbf{m}\|^{2}}{N-\sum_{i} \gamma_{i}} \tag{7.88}
\end{align*}
$$

where m_{i} is the $i^{\text {th }}$ component of the posterior mean \mathbf{m} defined by (7.82). The quantity γ_{i} measures how well the corresponding parameter w_{i} is determined by the data and is defined by

$$
\begin{equation*}
\gamma_{i}=1-\alpha_{i} \Sigma_{i i} \tag{7.89}
\end{equation*}
$$

in which $\Sigma_{i i}$ is the $i^{\text {th }}$ diagonal component of the posterior covariance Σ given by (7.83). Learning therefore proceeds by choosing initial values for α and β, evaluating the mean and covariance of the posterior using (7.82) and (7.83), respectively, and then alternately re-estimating the hyperparameters, using (7.87) and (7.88), and re-estimating the posterior mean and covariance, using (7.82) and (7.83), until a suitable convergence criterion is satisfied.

The second approach is to use the EM algorithm, and is discussed in Section 9.3.4. These two approaches to finding the values of the hyperparameters that

Exercise 9.23

Section 7.2.2

Exercise 7.14 maximize the evidence are formally equivalent. Numerically, however, it is found that the direct optimization approach corresponding to (7.87) and (7.88) gives somewhat faster convergence (Tipping, 2001).

As a result of the optimization, we find that a proportion of the hyperparameters $\left\{\alpha_{i}\right\}$ are driven to large (in principle infinite) values, and so the weight parameters w_{i} corresponding to these hyperparameters have posterior distributions with mean and variance both zero. Thus those parameters, and the corresponding basis functions $\phi_{i}(\mathbf{x})$, are removed from the model and play no role in making predictions for new inputs. In the case of models of the form (7.78), the inputs \mathbf{x}_{n} corresponding to the remaining nonzero weights are called relevance vectors, because they are identified through the mechanism of automatic relevance determination, and are analogous to the support vectors of an SVM. It is worth emphasizing, however, that this mechanism for achieving sparsity in probabilistic models through automatic relevance determination is quite general and can be applied to any model expressed as an adaptive linear combination of basis functions.

Having found values α^{\star} and β^{\star} for the hyperparameters that maximize the marginal likelihood, we can evaluate the predictive distribution over t for a new input x. Using (7.76) and (7.81), this is given by

$$
\begin{align*}
p\left(t \mid \mathbf{x}, \mathbf{X}, \mathbf{t}, \boldsymbol{\alpha}^{\star}, \beta^{\star}\right) & =\int p\left(t \mid \mathbf{x}, \mathbf{w}, \beta^{\star}\right) p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \boldsymbol{\alpha}^{\star}, \beta^{\star}\right) \mathrm{d} \mathbf{w} \\
& =\mathcal{N}\left(t \mid \mathbf{m}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma^{2}(\mathbf{x})\right) \tag{7.90}
\end{align*}
$$

Thus the predictive mean is given by (7.76) with \mathbf{w} set equal to the posterior mean \mathbf{m}, and the variance of the predictive distribution is given by

$$
\begin{equation*}
\sigma^{2}(\mathbf{x})=\left(\beta^{\star}\right)^{-1}+\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\phi}(\mathbf{x}) \tag{7.91}
\end{equation*}
$$

where $\boldsymbol{\Sigma}$ is given by (7.83) in which $\boldsymbol{\alpha}$ and β are set to their optimized values $\boldsymbol{\alpha}^{\star}$ and β^{\star}. This is just the familiar result (3.59) obtained in the context of linear regression. Recall that for localized basis functions, the predictive variance for linear regression models becomes small in regions of input space where there are no basis functions. In the case of an RVM with the basis functions centred on data points, the model will therefore become increasingly certain of its predictions when extrapolating outside the domain of the data (Rasmussen and Quiñonero-Candela, 2005), which of course is undesirable. The predictive distribution in Gaussian process regression does not

Figure 7.9 Illustration of RVM regression using the same data set, and the same Gaussian kernel functions, as used in Figure 7.8 for the ν-SVM regression model. The mean of the predictive distribution for the RVM is shown by the red line, and the one standarddeviation predictive distribution is shown by the shaded region. Also, the data points are shown in green, and the relevance vectors are indicated by blue circles. Note that there are only 3 relevance vectors compared to 7 support vectors for the ν-SVM in Fig-
 ure 7.8.
suffer from this problem. However, the computational cost of making predictions with a Gaussian processes is typically much higher than with an RVM.

Figure 7.9 shows an example of the RVM applied to the sinusoidal regression data set. Here the noise precision parameter β is also determined through evidence maximization. We see that the number of relevance vectors in the RVM is significantly smaller than the number of support vectors used by the SVM. For a wide range of regression and classification tasks, the RVM is found to give models that are typically an order of magnitude more compact than the corresponding support vector machine, resulting in a significant improvement in the speed of processing on test data. Remarkably, this greater sparsity is achieved with little or no reduction in generalization error compared with the corresponding SVM.

The principal disadvantage of the RVM compared to the SVM is that training involves optimizing a nonconvex function, and training times can be longer than for a comparable SVM. For a model with M basis functions, the RVM requires inversion of a matrix of size $M \times M$, which in general requires $O\left(M^{3}\right)$ computation. In the specific case of the SVM-like model (7.78), we have $M=N+1$. As we have noted, there are techniques for training SVMs whose cost is roughly quadratic in N. Of course, in the case of the RVM we always have the option of starting with a smaller number of basis functions than $N+1$. More significantly, in the relevance vector machine the parameters governing complexity and noise variance are determined automatically from a single training run, whereas in the support vector machine the parameters C and ϵ (or ν) are generally found using cross-validation, which involves multiple training runs. Furthermore, in the next section we shall derive an alternative procedure for training the relevance vector machine that improves training speed significantly.

7.2.2 Analysis of sparsity

We have noted earlier that the mechanism of automatic relevance determination causes a subset of parameters to be driven to zero. We now examine in more detail

Figure 7.10 Illustration of the mechanism for sparsity in a Bayesian linear regression model, showing a training set vector of target values given by $\mathbf{t}=\left(t_{1}, t_{2}\right)^{\mathrm{T}}$, indicated by the cross, for a model with one basis vector $\varphi=\left(\phi\left(\mathbf{x}_{1}\right), \phi\left(\mathbf{x}_{2}\right)\right)^{\mathrm{T}}$, which is poorly aligned with the target data vector \mathbf{t}. On the left we see a model having only isotropic noise, so that $\mathbf{C}=\beta^{-1} \mathbf{I}$, corresponding to $\alpha=\infty$, with β set to its most probable value. On the right we see the same model but with a finite value of α. In each case the red ellipse corresponds to unit Mahalanobis distance, with $|\mathbf{C}|$ taking the same value for both plots, while the dashed green circle shows the contrition arising from the noise term β^{-1}. We see that any finite value of α reduces the probability of the observed data, and so for the most probable solution the basis vector is removed.
the mechanism of sparsity in the context of the relevance vector machine. In the process, we will arrive at a significantly faster procedure for optimizing the hyperparameters compared to the direct techniques given above.

Before proceeding with a mathematical analysis, we first give some informal insight into the origin of sparsity in Bayesian linear models. Consider a data set comprising $N=2$ observations t_{1} and t_{2}, together with a model having a single basis function $\phi(\mathbf{x})$, with hyperparameter α, along with isotropic noise having precision β. From (7.85), the marginal likelihood is given by $p(\mathbf{t} \mid \alpha, \beta)=\mathcal{N}(\mathbf{t} \mid \mathbf{0}, \mathbf{C})$ in which the covariance matrix takes the form

$$
\begin{equation*}
\mathbf{C}=\frac{1}{\beta} \mathbf{I}+\frac{1}{\alpha} \boldsymbol{\varphi} \varphi^{\mathrm{T}} \tag{7.92}
\end{equation*}
$$

where φ denotes the N-dimensional vector $\left(\phi\left(\mathbf{x}_{1}\right), \phi\left(\mathbf{x}_{2}\right)\right)^{\mathrm{T}}$, and similarly $\mathbf{t}=$ $\left(t_{1}, t_{2}\right)^{\mathrm{T}}$. Notice that this is just a zero-mean Gaussian process model over \mathbf{t} with covariance C. Given a particular observation for \mathbf{t}, our goal is to find α^{\star} and β^{\star} by maximizing the marginal likelihood. We see from Figure 7.10 that, if there is a poor alignment between the direction of φ and that of the training data vector t, then the corresponding hyperparameter α will be driven to ∞, and the basis vector will be pruned from the model. This arises because any finite value for α will always assign a lower probability to the data, thereby decreasing the value of the density at \mathbf{t}, provided that β is set to its optimal value. We see that any finite value for α would cause the distribution to be elongated in a direction away from the data, thereby increasing the probability mass in regions away from the observed data and hence reducing the value of the density at the target data vector itself. For the more general case of M
basis vectors $\varphi_{1}, \ldots, \varphi_{M}$ a similar intuition holds, namely that if a particular basis vector is poorly aligned with the data vector \mathbf{t}, then it is likely to be pruned from the model.

We now investigate the mechanism for sparsity from a more mathematical perspective, for a general case involving M basis functions. To motivate this analysis we first note that, in the result (7.87) for re-estimating the parameter α_{i}, the terms on the right-hand side are themselves also functions of α_{i}. These results therefore represent implicit solutions, and iteration would be required even to determine a single α_{i} with all other α_{j} for $j \neq i$ fixed.

This suggests a different approach to solving the optimization problem for the RVM, in which we make explicit all of the dependence of the marginal likelihood (7.85) on a particular α_{i} and then determine its stationary points explicitly (Faul and Tipping, 2002; Tipping and Faul, 2003). To do this, we first pull out the contribution from α_{i} in the matrix \mathbf{C} defined by (7.86) to give

$$
\begin{align*}
\mathbf{C} & =\beta^{-1} \mathbf{I}+\sum_{j \neq i} \alpha_{j}^{-1} \boldsymbol{\varphi}_{j} \boldsymbol{\varphi}_{j}^{\mathrm{T}}+\alpha_{i}^{-1} \boldsymbol{\varphi}_{i} \boldsymbol{\varphi}_{i}^{\mathrm{T}} \\
& =\mathbf{C}_{-i}+\alpha_{i}^{-1} \boldsymbol{\varphi}_{i} \boldsymbol{\varphi}_{i}^{\mathrm{T}} \tag{7.93}
\end{align*}
$$

where φ_{i} denotes the $i^{\text {th }}$ column of $\boldsymbol{\Phi}$, in other words the N-dimensional vector with elements $\left(\phi_{i}\left(\mathbf{x}_{1}\right), \ldots, \phi_{i}\left(\mathbf{x}_{N}\right)\right)$, in contrast to ϕ_{n}, which denotes the $n^{\text {th }}$ row of $\boldsymbol{\Phi}$. The matrix \mathbf{C}_{-i} represents the matrix \mathbf{C} with the contribution from basis function i removed. Using the matrix identities (C.7) and (C.15), the determinant and inverse of \mathbf{C} can then be written

$$
\begin{align*}
|\mathbf{C}| & =\left|\mathbf{C}_{-i} \|\left|1+\alpha_{i}^{-1} \boldsymbol{\varphi}_{i}^{\mathrm{T}} \mathbf{C}_{-i}^{-1} \boldsymbol{\varphi}_{i}\right|\right. \tag{7.94}\\
\mathbf{C}^{-1} & =\mathbf{C}_{-i}^{-1}-\frac{\mathbf{C}_{-i}^{-1} \boldsymbol{\varphi}_{i} \boldsymbol{\varphi}_{i}^{\mathrm{T}} \mathbf{C}_{-i}^{-1}}{\alpha_{i}+\boldsymbol{\varphi}_{i}^{\mathrm{T}} \mathbf{C}_{-i}^{-1} \boldsymbol{\varphi}_{i}} \tag{7.95}
\end{align*}
$$

Using these results, we can then write the log marginal likelihood function (7.85) in the form

$$
\begin{equation*}
L(\boldsymbol{\alpha})=L\left(\boldsymbol{\alpha}_{-i}\right)+\lambda\left(\alpha_{i}\right) \tag{7.96}
\end{equation*}
$$

where $L\left(\boldsymbol{\alpha}_{-i}\right)$ is simply the \log marginal likelihood with basis function $\boldsymbol{\varphi}_{i}$ omitted, and the quantity $\lambda\left(\alpha_{i}\right)$ is defined by

$$
\begin{equation*}
\lambda\left(\alpha_{i}\right)=\frac{1}{2}\left[\ln \alpha_{i}-\ln \left(\alpha_{i}+s_{i}\right)+\frac{q_{i}^{2}}{\alpha_{i}+s_{i}}\right] \tag{7.97}
\end{equation*}
$$

and contains all of the dependence on α_{i}. Here we have introduced the two quantities

$$
\begin{align*}
s_{i} & =\boldsymbol{\varphi}_{i}^{\mathrm{T}} \mathbf{C}_{-i}^{-1} \boldsymbol{\varphi}_{i} \tag{7.98}\\
q_{i} & =\boldsymbol{\varphi}_{i}^{\mathrm{T}} \mathbf{C}_{-i}^{-1} \mathbf{t} \tag{7.99}
\end{align*}
$$

Here s_{i} is called the sparsity and q_{i} is known as the quality of $\boldsymbol{\varphi}_{i}$, and as we shall see, a large value of s_{i} relative to the value of q_{i} means that the basis function φ_{i}

Figure 7.11 Plots of the log marginal likelihood $\lambda\left(\alpha_{i}\right)$ versus $\ln \alpha_{i}$ showing on the left, the single maximum at a finite α_{i} for $q_{i}^{2}=4$ and $s_{i}=1$ (so that $q_{i}^{2}>s_{i}$) and on the right, the maximum at $\alpha_{i}=\infty$ for $q_{i}^{2}=1$ and $s_{i}=2$ (so that $q_{i}^{2}<s_{i}$).
is more likely to be pruned from the model. The 'sparsity' measures the extent to which basis function φ_{i} overlaps with the other basis vectors in the model, and the 'quality' represents a measure of the alignment of the basis vector φ_{n} with the error between the training set values $\mathbf{t}=\left(t_{1}, \ldots, t_{N}\right)^{\mathrm{T}}$ and the vector \mathbf{y}_{-i} of predictions that would result from the model with the vector φ_{i} excluded (Tipping and Faul, 2003).

The stationary points of the marginal likelihood with respect to α_{i} occur when the derivative

$$
\begin{equation*}
\frac{\mathrm{d} \lambda\left(\alpha_{i}\right)}{\mathrm{d} \alpha_{i}}=\frac{\alpha_{i}^{-1} s_{i}^{2}-\left(q_{i}^{2}-s_{i}\right)}{2\left(\alpha_{i}+s_{i}\right)^{2}} \tag{7.100}
\end{equation*}
$$

is equal to zero. There are two possible forms for the solution. Recalling that $\alpha_{i} \geqslant 0$, we see that if $q_{i}^{2}<s_{i}$, then $\alpha_{i} \rightarrow \infty$ provides a solution. Conversely, if $q_{i}^{2}>s_{i}$, we can solve for α_{i} to obtain

$$
\begin{equation*}
\alpha_{i}=\frac{s_{i}^{2}}{q_{i}^{2}-s_{i}} \tag{7.101}
\end{equation*}
$$

These two solutions are illustrated in Figure 7.11. We see that the relative size of the quality and sparsity terms determines whether a particular basis vector will be pruned from the model or not. A more complete analysis (Faul and Tipping, 2002), based on the second derivatives of the marginal likelihood, confirms these solutions are indeed the unique maxima of $\lambda\left(\alpha_{i}\right)$.

Note that this approach has yielded a closed-form solution for α_{i}, for given values of the other hyperparameters. As well as providing insight into the origin of sparsity in the RVM, this analysis also leads to a practical algorithm for optimizing the hyperparameters that has significant speed advantages. This uses a fixed set of candidate basis vectors, and then cycles through them in turn to decide whether each vector should be included in the model or not. The resulting sequential sparse Bayesian learning algorithm is described below.

Sequential Sparse Bayesian Learning Algorithm

1. If solving a regression problem, initialize β.
2. Initialize using one basis function φ_{1}, with hyperparameter α_{1} set using (7.101), with the remaining hyperparameters α_{j} for $j \neq i$ initialized to infinity, so that only φ_{1} is included in the model.
3. Evaluate $\boldsymbol{\Sigma}$ and \mathbf{m}, along with q_{i} and s_{i} for all basis functions.
4. Select a candidate basis function φ_{i}.
5. If $q_{i}^{2}>s_{i}$, and $\alpha_{i}<\infty$, so that the basis vector φ_{i} is already included in the model, then update α_{i} using (7.101).
6. If $q_{i}^{2}>s_{i}$, and $\alpha_{i}=\infty$, then add φ_{i} to the model, and evaluate hyperparameter α_{i} using (7.101).
7. If $q_{i}^{2} \leqslant s_{i}$, and $\alpha_{i}<\infty$ then remove basis function φ_{i} from the model, and set $\alpha_{i}=\infty$.
8. If solving a regression problem, update β.
9. If converged terminate, otherwise go to 3 .

Note that if $q_{i}^{2} \leqslant s_{i}$ and $\alpha_{i}=\infty$, then the basis function $\boldsymbol{\varphi}_{i}$ is already excluded from the model and no action is required.

In practice, it is convenient to evaluate the quantities

$$
\begin{align*}
Q_{i} & =\boldsymbol{\varphi}_{i}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{t} \tag{7.102}\\
S_{i} & =\boldsymbol{\varphi}_{i}^{\mathrm{T}} \mathbf{C}^{-1} \boldsymbol{\varphi}_{i} . \tag{7.103}
\end{align*}
$$

The quality and sparseness variables can then be expressed in the form

$$
\begin{align*}
q_{i} & =\frac{\alpha_{i} Q_{i}}{\alpha_{i}-S_{i}} \tag{7.104}\\
s_{i} & =\frac{\alpha_{i} S_{i}}{\alpha_{i}-S_{i}} \tag{7.105}
\end{align*}
$$

Note that when $\alpha_{i}=\infty$, we have $q_{i}=Q_{i}$ and $s_{i}=S_{i}$. Using (C.7), we can write

$$
\begin{align*}
Q_{i} & =\beta \boldsymbol{\varphi}_{i}^{\mathrm{T}} \mathbf{t}-\beta^{2} \boldsymbol{\varphi}_{i}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} \tag{7.106}\\
S_{i} & =\beta \boldsymbol{\varphi}_{i}^{\mathrm{T}} \boldsymbol{\varphi}_{i}-\beta^{2} \boldsymbol{\varphi}_{i}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\varphi}_{i} \tag{7.107}
\end{align*}
$$

where $\boldsymbol{\Phi}$ and Σ involve only those basis vectors that correspond to finite hyperparameters α_{i}. At each stage the required computations therefore scale like $O\left(M^{3}\right)$, where M is the number of active basis vectors in the model and is typically much smaller than the number N of training patterns.

7.2.3 RVM for classification

We can extend the relevance vector machine framework to classification problems by applying the ARD prior over weights to a probabilistic linear classification model of the kind studied in Chapter 4. To start with, we consider two-class problems with a binary target variable $t \in\{0,1\}$. The model now takes the form of a linear combination of basis functions transformed by a logistic sigmoid function

$$
\begin{equation*}
y(\mathbf{x}, \mathbf{w})=\sigma\left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})\right) \tag{7.108}
\end{equation*}
$$

Section 4.4

Exercise 7.18
where $\sigma(\cdot)$ is the logistic sigmoid function defined by (4.59). If we introduce a Gaussian prior over the weight vector \mathbf{w}, then we obtain the model that has been considered already in Chapter 4. The difference here is that in the RVM, this model uses the ARD prior (7.80) in which there is a separate precision hyperparameter associated with each weight parameter.

In contrast to the regression model, we can no longer integrate analytically over the parameter vector w. Here we follow Tipping (2001) and use the Laplace approximation, which was applied to the closely related problem of Bayesian logistic regression in Section 4.5.1.

We begin by initializing the hyperparameter vector α. For this given value of $\boldsymbol{\alpha}$, we then build a Gaussian approximation to the posterior distribution and thereby obtain an approximation to the marginal likelihood. Maximization of this approximate marginal likelihood then leads to a re-estimated value for $\boldsymbol{\alpha}$, and the process is repeated until convergence.

Let us consider the Laplace approximation for this model in more detail. For a fixed value of $\boldsymbol{\alpha}$, the mode of the posterior distribution over \mathbf{w} is obtained by maximizing

$$
\begin{align*}
& \ln p(\mathbf{w} \mid \mathbf{t}, \boldsymbol{\alpha})=\ln \{p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w} \mid \boldsymbol{\alpha})\}-\ln p(\mathbf{t} \mid \boldsymbol{\alpha}) \\
& \quad=\sum_{n=1}^{N}\left\{t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\}-\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{A} \mathbf{w}+\mathrm{const} \tag{7.109}
\end{align*}
$$

where $\mathbf{A}=\operatorname{diag}\left(\alpha_{i}\right)$. This can be done using iterative reweighted least squares (IRLS) as discussed in Section 4.3.3. For this, we need the gradient vector and Hessian matrix of the log posterior distribution, which from (7.109) are given by

$$
\begin{align*}
\nabla \ln p(\mathbf{w} \mid \mathbf{t}, \boldsymbol{\alpha}) & =\boldsymbol{\Phi}^{\mathrm{T}}(\mathbf{t}-\mathbf{y})-\mathbf{A} \mathbf{w} \tag{7.110}\\
\nabla \nabla \ln p(\mathbf{w} \mid \mathbf{t}, \boldsymbol{\alpha}) & =-\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{B} \boldsymbol{\Phi}+\mathbf{A}\right) \tag{7.111}
\end{align*}
$$

where B is an $N \times N$ diagonal matrix with elements $b_{n}=y_{n}\left(1-y_{n}\right)$, the vector $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)^{\mathrm{T}}$, and $\boldsymbol{\Phi}$ is the design matrix with elements $\Phi_{n i}=\phi_{i}\left(\mathbf{x}_{n}\right)$. Here we have used the property (4.88) for the derivative of the logistic sigmoid function. At convergence of the IRLS algorithm, the negative Hessian represents the inverse covariance matrix for the Gaussian approximation to the posterior distribution.

The mode of the resulting approximation to the posterior distribution, corresponding to the mean of the Gaussian approximation, is obtained setting (7.110) to zero, giving the mean and covariance of the Laplace approximation in the form

$$
\begin{align*}
\mathbf{w}^{\star} & =\mathbf{A}^{-1} \boldsymbol{\Phi}^{\mathrm{T}}(\mathbf{t}-\mathbf{y}) \tag{7.112}\\
\mathbf{\Sigma} & =\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{B} \boldsymbol{\Phi}+\mathbf{A}\right)^{-1} \tag{7.113}
\end{align*}
$$

We can now use this Laplace approximation to evaluate the marginal likelihood. Using the general result (4.135) for an integral evaluated using the Laplace approxi-

Section 13.3
mation, we have

$$
\begin{align*}
p(\mathbf{t} \mid \boldsymbol{\alpha}) & =\int p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w} \mid \boldsymbol{\alpha}) \mathrm{d} \mathbf{w} \\
& \simeq p\left(\mathbf{t} \mid \mathbf{w}^{\star}\right) p\left(\mathbf{w}^{\star} \mid \boldsymbol{\alpha}\right)(2 \pi)^{M / 2}|\boldsymbol{\Sigma}|^{1 / 2} \tag{7.114}
\end{align*}
$$

If we substitute for $p\left(\mathbf{t} \mid \mathbf{w}^{\star}\right)$ and $p\left(\mathbf{w}^{\star} \mid \boldsymbol{\alpha}\right)$ and then set the derivative of the marginal likelihood with respect to α_{i} equal to zero, we obtain

$$
\begin{equation*}
-\frac{1}{2}\left(w_{i}^{\star}\right)^{2}+\frac{1}{2 \alpha_{i}}-\frac{1}{2} \Sigma_{i i}=0 . \tag{7.115}
\end{equation*}
$$

Defining $\gamma_{i}=1-\alpha_{i} \Sigma_{i i}$ and rearranging then gives

$$
\begin{equation*}
\alpha_{i}^{\mathrm{new}}=\frac{\gamma_{i}}{\left(w_{i}^{\star}\right)^{2}} \tag{7.116}
\end{equation*}
$$

which is identical to the re-estimation formula (7.87) obtained for the regression RVM.

If we define

$$
\begin{equation*}
\widehat{\mathbf{t}}=\boldsymbol{\Phi} \mathbf{w}^{\star}+\mathbf{B}^{-1}(\mathbf{t}-\mathbf{y}) \tag{7.117}
\end{equation*}
$$

we can write the approximate log marginal likelihood in the form

$$
\begin{equation*}
\ln p(\mathbf{t} \mid \boldsymbol{\alpha}, \beta)=-\frac{1}{2}\left\{N \ln (2 \pi)+\ln |\mathbf{C}|+(\widehat{\mathbf{t}})^{\mathrm{T}} \mathbf{C}^{-1} \widehat{\mathbf{t}}\right\} \tag{7.118}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{C}=\mathbf{B}+\boldsymbol{\Phi} \mathbf{A} \boldsymbol{\Phi}^{\mathrm{T}} \tag{7.119}
\end{equation*}
$$

This takes the same form as (7.85) in the regression case, and so we can apply the same analysis of sparsity and obtain the same fast learning algorithm in which we fully optimize a single hyperparameter α_{i} at each step.

Figure 7.12 shows the relevance vector machine applied to a synthetic classification data set. We see that the relevance vectors tend not to lie in the region of the decision boundary, in contrast to the support vector machine. This is consistent with our earlier discussion of sparsity in the RVM, because a basis function $\phi_{i}(\mathbf{x})$ centred on a data point near the boundary will have a vector φ_{i} that is poorly aligned with the training data vector \mathbf{t}.

One of the potential advantages of the relevance vector machine compared with the SVM is that it makes probabilistic predictions. For example, this allows the RVM to be used to help construct an emission density in a nonlinear extension of the linear dynamical system for tracking faces in video sequences (Williams et al., 2005).

So far, we have considered the RVM for binary classification problems. For $K>2$ classes, we again make use of the probabilistic approach in Section 4.3.4 in which there are K linear models of the form

$$
\begin{equation*}
a_{k}=\mathbf{w}_{k}^{\mathrm{T}} \mathbf{x} \tag{7.120}
\end{equation*}
$$

a Bayesian approach, like any approach to pattern recognition, needs to make assumptions about the form of the model, and if these are invalid then the results can be misleading. In particular, we see from Figure 3.12 that the model evidence can be sensitive to many aspects of the prior, such as the behaviour in the tails. Indeed, the evidence is not defined if the prior is improper, as can be seen by noting that an improper prior has an arbitrary scaling factor (in other words, the normalization coefficient is not defined because the distribution cannot be normalized). If we consider a proper prior and then take a suitable limit in order to obtain an improper prior (for example, a Gaussian prior in which we take the limit of infinite variance) then the evidence will go to zero, as can be seen from (3.70) and Figure 3.12. It may, however, be possible to consider the evidence ratio between two models first and then take a limit to obtain a meaningful answer.

In a practical application, therefore, it will be wise to keep aside an independent test set of data on which to evaluate the overall performance of the final system.

3.5. The Evidence Approximation

In a fully Bayesian treatment of the linear basis function model, we would introduce prior distributions over the hyperparameters α and β and make predictions by marginalizing with respect to these hyperparameters as well as with respect to the parameters \mathbf{w}. However, although we can integrate analytically over either \mathbf{w} or over the hyperparameters, the complete marginalization over all of these variables is analytically intractable. Here we discuss an approximation in which we set the hyperparameters to specific values determined by maximizing the marginal likelihood function obtained by first integrating over the parameters \mathbf{w}. This framework is known in the statistics literature as empirical Bayes (Bernardo and Smith, 1994; Gelman et al., 2004), or type 2 maximum likelihood (Berger, 1985), or generalized maximum likelihood (Wahba, 1975), and in the machine learning literature is also called the evidence approximation (Gull, 1989; MacKay, 1992a).

If we introduce hyperpriors over α and β, the predictive distribution is obtained by marginalizing over \mathbf{w}, α and β so that

$$
\begin{equation*}
p(t \mid \mathbf{t})=\iiint p(t \mid \mathbf{w}, \beta) p(\mathbf{w} \mid \mathbf{t}, \alpha, \beta) p(\alpha, \beta \mid \mathbf{t}) \mathrm{d} \mathbf{w} \mathrm{~d} \alpha \mathrm{~d} \beta \tag{3.74}
\end{equation*}
$$

where $p(t \mid \mathbf{w}, \beta)$ is given by (3.8) and $p(\mathbf{w} \mid \mathbf{t}, \alpha, \beta)$ is given by (3.49) with \mathbf{m}_{N} and \mathbf{S}_{N} defined by (3.53) and (3.54) respectively. Here we have omitted the dependence on the input variable x to keep the notation uncluttered. If the posterior distribution $p(\alpha, \beta \mid \mathbf{t})$ is sharply peaked around values $\widehat{\alpha}$ and $\widehat{\beta}$, then the predictive distribution is obtained simply by marginalizing over \mathbf{w} in which α and β are fixed to the values $\widehat{\alpha}$ and $\widehat{\beta}$, so that

$$
\begin{equation*}
p(t \mid \mathbf{t}) \simeq p(t \mid \mathbf{t}, \widehat{\alpha}, \widehat{\beta})=\int p(t \mid \mathbf{w}, \widehat{\beta}) p(\mathbf{w} \mid \mathbf{t}, \widehat{\alpha}, \widehat{\beta}) \mathrm{d} \mathbf{w} \tag{3.75}
\end{equation*}
$$

From Bayes' theorem, the posterior distribution for α and β is given by

$$
\begin{equation*}
p(\alpha, \beta \mid \mathbf{t}) \propto p(\mathbf{t} \mid \alpha, \beta) p(\alpha, \beta) \tag{3.76}
\end{equation*}
$$

If the prior is relatively flat, then in the evidence framework the values of $\widehat{\alpha}$ and $\widehat{\beta}$ are obtained by maximizing the marginal likelihood function $p(\mathbf{t} \mid \alpha, \beta)$. We shall proceed by evaluating the marginal likelihood for the linear basis function model and then finding its maxima. This will allow us to determine values for these hyperparameters from the training data alone, without recourse to cross-validation. Recall that the ratio α / β is analogous to a regularization parameter.

As an aside it is worth noting that, if we define conjugate (Gamma) prior distributions over α and β, then the marginalization over these hyperparameters in (3.74) can be performed analytically to give a Student's t-distribution over w (see Section 2.3.7). Although the resulting integral over \mathbf{w} is no longer analytically tractable, it might be thought that approximating this integral, for example using the Laplace approximation discussed (Section 4.4) which is based on a local Gaussian approximation centred on the mode of the posterior distribution, might provide a practical alternative to the evidence framework (Buntine and Weigend, 1991). However, the integrand as a function of \mathbf{w} typically has a strongly skewed mode so that the Laplace approximation fails to capture the bulk of the probability mass, leading to poorer results than those obtained by maximizing the evidence (MacKay, 1999).

Returning to the evidence framework, we note that there are two approaches that we can take to the maximization of the log evidence. We can evaluate the evidence function analytically and then set its derivative equal to zero to obtain re-estimation equations for α and β, which we shall do in Section 3.5.2. Alternatively we use a technique called the expectation maximization (EM) algorithm, which will be discussed in Section 9.3.4 where we shall also show that these two approaches converge to the same solution.

3.5.1 Evaluation of the evidence function

The marginal likelihood function $p(\mathbf{t} \mid \alpha, \beta)$ is obtained by integrating over the weight parameters \mathbf{w}, so that

$$
\begin{equation*}
p(\mathbf{t} \mid \alpha, \beta)=\int p(\mathbf{t} \mid \mathbf{w}, \beta) p(\mathbf{w} \mid \alpha) \mathrm{d} \mathbf{w} \tag{3.77}
\end{equation*}
$$

One way to evaluate this integral is to make use once again of the result (2.115)

Exercise 3.16

Exercise 3.17 for the conditional distribution in a linear-Gaussian model. Here we shall evaluate the integral instead by completing the square in the exponent and making use of the standard form for the normalization coefficient of a Gaussian.

From (3.11), (3.12), and (3.52), we can write the evidence function in the form

$$
\begin{equation*}
p(\mathbf{t} \mid \alpha, \beta)=\left(\frac{\beta}{2 \pi}\right)^{N / 2}\left(\frac{\alpha}{2 \pi}\right)^{M / 2} \int \exp \{-E(\mathbf{w})\} \mathrm{d} \mathbf{w} \tag{3.78}
\end{equation*}
$$

where M is the dimensionality of \mathbf{w}, and we have defined

$$
\begin{align*}
E(\mathbf{w}) & =\beta E_{D}(\mathbf{w})+\alpha E_{W}(\mathbf{w}) \\
& =\frac{\beta}{2}\|\mathbf{t}-\mathbf{\Phi} \mathbf{w}\|^{2}+\frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \tag{3.79}
\end{align*}
$$

We recognize (3.79) as being equal, up to a constant of proportionality, to the reg- ularized sum-of-squares error function (3.27). We now complete the square over w giving

$$
\begin{equation*}
E(\mathbf{w})=E\left(\mathbf{m}_{N}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{m}_{N}\right)^{\mathrm{T}} \mathbf{A}\left(\mathbf{w}-\mathbf{m}_{N}\right) \tag{3.80}
\end{equation*}
$$

where we have introduced

$$
\begin{equation*}
\mathbf{A}=\alpha \mathbf{I}+\beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \tag{3.81}
\end{equation*}
$$

together with

$$
\begin{equation*}
E\left(\mathbf{m}_{N}\right)=\frac{\beta}{2}\left\|\mathbf{t}-\mathbf{\Phi} \mathbf{m}_{N}\right\|^{2}+\frac{\alpha}{2} \mathbf{m}_{N}^{\mathrm{T}} \mathbf{m}_{N} \tag{3.82}
\end{equation*}
$$

Note that \mathbf{A} corresponds to the matrix of second derivatives of the error function

$$
\begin{equation*}
\mathbf{A}=\nabla \nabla E(\mathbf{w}) \tag{3.83}
\end{equation*}
$$

and is known as the Hessian matrix. Here we have also defined \mathbf{m}_{N} given by

$$
\begin{equation*}
\mathbf{m}_{N}=\beta \mathbf{A}^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} \tag{3.84}
\end{equation*}
$$

Using (3.54), we see that $\mathbf{A}=\mathbf{S}_{N}^{-1}$, and hence (3.84) is equivalent to the previous definition (3.53), and therefore represents the mean of the posterior distribution.

The integral over \mathbf{w} can now be evaluated simply by appealing to the standard result for the normalization coefficient of a multivariate Gaussian, giving

$$
\begin{align*}
& \int \exp \{-E(\mathbf{w})\} \mathrm{d} \mathbf{w} \\
& =\exp \left\{-E\left(\mathbf{m}_{N}\right)\right\} \int \exp \left\{-\frac{1}{2}\left(\mathbf{w}-\mathbf{m}_{N}\right)^{\mathrm{T}} \mathbf{A}\left(\mathbf{w}-\mathbf{m}_{N}\right)\right\} \mathrm{d} \mathbf{w} \\
& =\exp \left\{-E\left(\mathbf{m}_{N}\right)\right\}(2 \pi)^{M / 2}|\mathbf{A}|^{-1 / 2} \tag{3.85}
\end{align*}
$$

Using (3.78) we can then write the log of the marginal likelihood in the form

$$
\begin{equation*}
\ln p(\mathbf{t} \mid \alpha, \beta)=\frac{M}{2} \ln \alpha+\frac{N}{2} \ln \beta-E\left(\mathbf{m}_{N}\right)-\frac{1}{2} \ln |\mathbf{A}|-\frac{N}{2} \ln (2 \pi) \tag{3.86}
\end{equation*}
$$

which is the required expression for the evidence function.
Returning to the polynomial regression problem, we can plot the model evidence against the order of the polynomial, as shown in Figure 3.14. Here we have assumed a prior of the form (1.65) with the parameter α fixed at $\alpha=5 \times 10^{-3}$. The form of this plot is very instructive. Referring back to Figure 1.4, we see that the $M=0$ polynomial has very poor fit to the data and consequently gives a relatively low value

Figure 3.14 Plot of the model evidence versus the order M, for the polynomial regression model, showing that the evidence favours the model with $M=3$.

for the evidence. Going to the $M=1$ polynomial greatly improves the data fit, and hence the evidence is significantly higher. However, in going to $M=2$, the data fit is improved only very marginally, due to the fact that the underlying sinusoidal function from which the data is generated is an odd function and so has no even terms in a polynomial expansion. Indeed, Figure 1.5 shows that the residual data error is reduced only slightly in going from $M=1$ to $M=2$. Because this richer model suffers a greater complexity penalty, the evidence actually falls in going from $M=1$ to $M=2$. When we go to $M=3$ we obtain a significant further improvement in data fit, as seen in Figure 1.4, and so the evidence is increased again, giving the highest overall evidence for any of the polynomials. Further increases in the value of M produce only small improvements in the fit to the data but suffer increasing complexity penalty, leading overall to a decrease in the evidence values. Looking again at Figure 1.5, we see that the generalization error is roughly constant between $M=3$ and $M=8$, and it would be difficult to choose between these models on the basis of this plot alone. The evidence values, however, show a clear preference for $M=3$, since this is the simplest model which gives a good explanation for the observed data.

3.5.2 Maximizing the evidence function

Let us first consider the maximization of $p(\mathbf{t} \mid \alpha, \beta)$ with respect to α. This can be done by first defining the following eigenvector equation

$$
\begin{equation*}
\left(\beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right) \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \tag{3.87}
\end{equation*}
$$

From (3.81), it then follows that \mathbf{A} has eigenvalues $\alpha+\lambda_{i}$. Now consider the derivative of the term involving $\ln |\mathbf{A}|$ in (3.86) with respect to α. We have

$$
\begin{equation*}
\frac{d}{d \alpha} \ln |\mathbf{A}|=\frac{d}{d \alpha} \ln \prod_{i}\left(\lambda_{i}+\alpha\right)=\frac{d}{d \alpha} \sum_{i} \ln \left(\lambda_{i}+\alpha\right)=\sum_{i} \frac{1}{\lambda_{i}+\alpha} \tag{3.88}
\end{equation*}
$$

Thus the stationary points of (3.86) with respect to α satisfy

$$
\begin{equation*}
0=\frac{M}{2 \alpha}-\frac{1}{2} \mathbf{m}_{N}^{\mathrm{T}} \mathbf{m}_{N}-\frac{1}{2} \sum_{i} \frac{1}{\lambda_{i}+\alpha} \tag{3.89}
\end{equation*}
$$

Multiplying through by 2α and rearranging, we obtain

$$
\begin{equation*}
\alpha \mathbf{m}_{N}^{\mathrm{T}} \mathbf{m}_{N}=M-\alpha \sum_{i} \frac{1}{\lambda_{i}+\alpha}=\gamma \tag{3.90}
\end{equation*}
$$

Since there are M terms in the sum over i, the quantity γ can be written

$$
\begin{equation*}
\gamma=\sum_{i} \frac{\lambda_{i}}{\alpha+\lambda_{i}} \tag{3.91}
\end{equation*}
$$

The interpretation of the quantity γ will be discussed shortly. From (3.90) we see that the value of α that maximizes the marginal likelihood satisfies

$$
\begin{equation*}
\alpha=\frac{\gamma}{\mathbf{m}_{N}^{\mathrm{T}} \mathbf{m}_{N}} \tag{3.92}
\end{equation*}
$$

Note that this is an implicit solution for α not only because γ depends on α, but also because the mode \mathbf{m}_{N} of the posterior distribution itself depends on the choice of α. We therefore adopt an iterative procedure in which we make an initial choice for α and use this to find \mathbf{m}_{N}, which is given by (3.53), and also to evaluate γ, which is given by (3.91). These values are then used to re-estimate α using (3.92), and the process repeated until convergence. Note that because the matrix $\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}$ is fixed, we can compute its eigenvalues once at the start and then simply multiply these by β to obtain the λ_{i}.

It should be emphasized that the value of α has been determined purely by looking at the training data. In contrast to maximum likelihood methods, no independent data set is required in order to optimize the model complexity.

We can similarly maximize the log marginal likelihood (3.86) with respect to β. To do this, we note that the eigenvalues λ_{i} defined by (3.87) are proportional to β, and hence $d \lambda_{i} / d \beta=\lambda_{i} / \beta$ giving

$$
\begin{equation*}
\frac{d}{d \beta} \ln |\mathbf{A}|=\frac{d}{d \beta} \sum_{i} \ln \left(\lambda_{i}+\alpha\right)=\frac{1}{\beta} \sum_{i} \frac{\lambda_{i}}{\lambda_{i}+\alpha}=\frac{\gamma}{\beta} . \tag{3.93}
\end{equation*}
$$

The stationary point of the marginal likelihood therefore satisfies

$$
\begin{equation*}
0=\frac{N}{2 \beta}-\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{m}_{N}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}-\frac{\gamma}{2 \beta} \tag{3.94}
\end{equation*}
$$

and rearranging we obtain

$$
\begin{equation*}
\frac{1}{\beta}=\frac{1}{N-\gamma} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{m}_{N}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2} \tag{3.95}
\end{equation*}
$$

Again, this is an implicit solution for β and can be solved by choosing an initial value for β and then using this to calculate \mathbf{m}_{N} and γ and then re-estimate β using (3.95), repeating until convergence. If both α and β are to be determined from the data, then their values can be re-estimated together after each update of γ.

Figure 2.9 The plot on the left shows the contours of a Gaussian distribution $p\left(x_{a}, x_{b}\right)$ over two variables, and the plot on the right shows the marginal distribution $p\left(x_{a}\right)$ (blue curve) and the conditional distribution $p\left(x_{a} \mid x_{b}\right)$ for $x_{b}=0.7$ (red curve).

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \tag{2.95}\\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right), \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
$$

Conditional distribution:

$$
\begin{align*}
p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{a \mid b}, \boldsymbol{\Lambda}_{a a}^{-1}\right) \tag{2.96}\\
\boldsymbol{\mu}_{a \mid b} & =\boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a a}^{-1} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \tag{2.97}
\end{align*}
$$

Marginal distribution:

$$
\begin{equation*}
p\left(\mathbf{x}_{a}\right)=\mathcal{N}\left(\mathbf{x}_{a} \mid \boldsymbol{\mu}_{a}, \boldsymbol{\Sigma}_{a a}\right) \tag{2.98}
\end{equation*}
$$

We illustrate the idea of conditional and marginal distributions associated with a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes' theorem for Gaussian variables

In Sections 2.3.1 and 2.3.2, we considered a Gaussian $p(\mathbf{x})$ in which we partitioned the vector \mathbf{x} into two subvectors $\mathbf{x}=\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right)$ and then found expressions for the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ and the marginal distribution $p\left(\mathbf{x}_{a}\right)$. We noted that the mean of the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ was a linear function of \mathbf{x}_{b}. Here we shall suppose that we are given a Gaussian marginal distribution $p(\mathbf{x})$ and a Gaussian conditional distribution $p(\mathbf{y} \mid \mathbf{x})$ in which $p(\mathbf{y} \mid \mathbf{x})$ has a mean that is a linear function of \mathbf{x}, and a covariance which is independent of \mathbf{x}. This is an example of
a linear Gaussian model (Roweis and Ghahramani, 1999), which we shall study in greater generality in Section 8.1.4. We wish to find the marginal distribution $p(\mathbf{y})$ and the conditional distribution $p(\mathbf{x} \mid \mathbf{y})$. This is a problem that will arise frequently in subsequent chapters, and it will prove convenient to derive the general results here.

We shall take the marginal and conditional distributions to be

$$
\begin{align*}
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right) \tag{2.99}\\
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right) \tag{2.100}
\end{align*}
$$

where $\boldsymbol{\mu}, \mathbf{A}$, and \mathbf{b} are parameters governing the means, and $\boldsymbol{\Lambda}$ and \mathbf{L} are precision matrices. If \mathbf{x} has dimensionality M and \mathbf{y} has dimensionality D, then the matrix \mathbf{A} has size $D \times M$.

First we find an expression for the joint distribution over \mathbf{x} and \mathbf{y}. To do this, we define

$$
\begin{equation*}
\mathrm{z}=\binom{\mathrm{x}}{\mathrm{y}} \tag{2.101}
\end{equation*}
$$

and then consider the log of the joint distribution

$$
\begin{align*}
\ln p(\mathbf{z})= & \ln p(\mathbf{x})+\ln p(\mathbf{y} \mid \mathbf{x}) \\
= & -\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu}) \\
& -\frac{1}{2}(\mathbf{y}-\mathbf{A} \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{A} \mathbf{x}-\mathbf{b})+\mathrm{const} \tag{2.102}
\end{align*}
$$

where 'const' denotes terms independent of \mathbf{x} and \mathbf{y}. As before, we see that this is a quadratic function of the components of \mathbf{z}, and hence $p(\mathbf{z})$ is Gaussian distribution. To find the precision of this Gaussian, we consider the second order terms in (2.102), which can be written as

$$
\begin{align*}
& -\frac{1}{2} \mathbf{x}^{\mathrm{T}}\left(\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right) \mathbf{x}-\frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{L} \mathbf{y}+\frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{L} \mathbf{A} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{y} \\
& \quad=-\frac{1}{2}\binom{\mathbf{x}}{\mathbf{y}}^{\mathrm{T}}\left(\begin{array}{cc}
\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathrm{T}} \mathbf{L} \\
-\mathbf{L} \mathbf{A} & \mathbf{L}
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}=-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \mathbf{R} \mathbf{z} \tag{2.103}
\end{align*}
$$

and so the Gaussian distribution over \mathbf{z} has precision (inverse covariance) matrix given by

$$
\mathbf{R}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathrm{T}} \mathbf{L} \tag{2.104}\\
-\mathbf{L} \mathbf{A} & \mathbf{L}
\end{array}\right)
$$

The covariance matrix is found by taking the inverse of the precision, which can be done using the matrix inversion formula (2.76) to give

$$
\operatorname{cov}[\mathbf{z}]=\mathbf{R}^{-1}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}^{-1} & \boldsymbol{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}} \tag{2.105}\\
\mathbf{A} \boldsymbol{\Lambda}^{-1} & \mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}}
\end{array}\right)
$$

Similarly, we can find the mean of the Gaussian distribution over z by identifying the linear terms in (2.102), which are given by

$$
\begin{equation*}
\mathbf{x}^{\mathrm{T}} \boldsymbol{\Lambda} \boldsymbol{\mu}-\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{L b}+\mathbf{y}^{\mathrm{T}} \mathbf{L} \mathbf{b}=\binom{\mathbf{x}}{\mathbf{y}}^{\mathrm{T}}\binom{\boldsymbol{\Lambda} \boldsymbol{\mu}-\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{b}}{\mathbf{L} \mathbf{b}} \tag{2.106}
\end{equation*}
$$

Using our earlier result (2.71) obtained by completing the square over the quadratic form of a multivariate Gaussian, we find that the mean of \mathbf{z} is given by

$$
\begin{equation*}
\mathbb{E}[\mathbf{z}]=\mathbf{R}^{-1}\binom{\boldsymbol{\Lambda} \boldsymbol{\mu}-\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{b}}{\mathbf{L b}} \tag{2.107}
\end{equation*}
$$

Exercise 2.30

Section 2.3

Section 2.3

Making use of (2.105), we then obtain

$$
\begin{equation*}
\mathbb{E}[\mathbf{z}]=\binom{\boldsymbol{\mu}}{\mathbf{A} \boldsymbol{\mu}+\mathbf{b}} . \tag{2.108}
\end{equation*}
$$

Next we find an expression for the marginal distribution $p(\mathbf{y})$ in which we have marginalized over \mathbf{x}. Recall that the marginal distribution over a subset of the components of a Gaussian random vector takes a particularly simple form when expressed in terms of the partitioned covariance matrix. Specifically, its mean and covariance are given by (2.92) and (2.93), respectively. Making use of (2.105) and (2.108) we see that the mean and covariance of the marginal distribution $p(\mathbf{y})$ are given by

$$
\begin{align*}
\mathbb{E}[\mathbf{y}] & =\mathbf{A} \boldsymbol{\mu}+\mathbf{b} \tag{2.109}\\
\operatorname{cov}[\mathbf{y}] & =\mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}} \tag{2.110}
\end{align*}
$$

A special case of this result is when $\mathbf{A}=\mathbf{I}$, in which case it reduces to the convolution of two Gaussians, for which we see that the mean of the convolution is the sum of the mean of the two Gaussians, and the covariance of the convolution is the sum of their covariances.

Finally, we seek an expression for the conditional $p(\mathbf{x} \mid \mathbf{y})$. Recall that the results for the conditional distribution are most easily expressed in terms of the partitioned precision matrix, using (2.73) and (2.75). Applying these results to (2.105) and (2.108) we see that the conditional distribution $p(\mathbf{x} \mid \mathbf{y})$ has mean and covariance given by

$$
\begin{align*}
\mathbb{E}[\mathbf{x} \mid \mathbf{y}] & =\left(\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right)^{-1}\left\{\mathbf{A}^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda} \boldsymbol{\mu}\right\} \tag{2.111}\\
\operatorname{cov}[\mathbf{x} \mid \mathbf{y}] & =\left(\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right)^{-1} \tag{2.112}
\end{align*}
$$

The evaluation of this conditional can be seen as an example of Bayes' theorem. We can interpret the distribution $p(\mathbf{x})$ as a prior distribution over \mathbf{x}. If the variable \mathbf{y} is observed, then the conditional distribution $p(\mathbf{x} \mid \mathbf{y})$ represents the corresponding posterior distribution over \mathbf{x}. Having found the marginal and conditional distributions, we effectively expressed the joint distribution $p(\mathbf{z})=p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})$ in the form $p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y})$. These results are summarized below.

Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for \mathbf{x} and a conditional Gaussian distribution for \mathbf{y} given \mathbf{x} in the form

$$
\begin{align*}
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right) \tag{2.113}\\
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right) \tag{2.114}
\end{align*}
$$

the marginal distribution of \mathbf{y} and the conditional distribution of \mathbf{x} given \mathbf{y} are given by

$$
\begin{align*}
p(\mathbf{y}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}}\right) \tag{2.115}\\
p(\mathbf{x} \mid \mathbf{y}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\Sigma}\left\{\mathbf{A}^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda} \boldsymbol{\mu}\right\}, \mathbf{\Sigma}\right) \tag{2.116}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Sigma}=\left(\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right)^{-1} \tag{2.117}
\end{equation*}
$$

2.3.4 Maximum likelihood for the Gaussian

Given a data set $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)^{\mathrm{T}}$ in which the observations $\left\{\mathbf{x}_{n}\right\}$ are assumed to be drawn independently from a multivariate Gaussian distribution, we can estimate the parameters of the distribution by maximum likelihood. The log likelihood function is given by

$$
\begin{equation*}
\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{N D}{2} \ln (2 \pi)-\frac{N}{2} \ln |\boldsymbol{\Sigma}|-\frac{1}{2} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right) \tag{2.118}
\end{equation*}
$$

By simple rearrangement, we see that the likelihood function depends on the data set only through the two quantities

$$
\begin{equation*}
\sum_{n=1}^{N} \mathbf{x}_{n}, \quad \quad \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}} \tag{2.119}
\end{equation*}
$$

These are known as the sufficient statistics for the Gaussian distribution. Using (C.19), the derivative of the log likelihood with respect to $\boldsymbol{\mu}$ is given by

$$
\begin{equation*}
\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right) \tag{2.120}
\end{equation*}
$$

and setting this derivative to zero, we obtain the solution for the maximum likelihood estimate of the mean given by

$$
\begin{equation*}
\boldsymbol{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \tag{2.121}
\end{equation*}
$$

Appendix C. Properties of Matrices

In this appendix, we gather together some useful properties and identities involving matrices and determinants. This is not intended to be an introductory tutorial, and it is assumed that the reader is already familiar with basic linear algebra. For some results, we indicate how to prove them, whereas in more complex cases we leave the interested reader to refer to standard textbooks on the subject. In all cases, we assume that inverses exist and that matrix dimensions are such that the formulae are correctly defined. A comprehensive discussion of linear algebra can be found in Golub and Van Loan (1996), and an extensive collection of matrix properties is given by Lütkepohl (1996). Matrix derivatives are discussed in Magnus and Neudecker (1999).

Basic Matrix Identities

A matrix A has elements $A_{i j}$ where i indexes the rows, and j indexes the columns. We use \mathbf{I}_{N} to denote the $N \times N$ identity matrix (also called the unit matrix), and where there is no ambiguity over dimensionality we simply use \mathbf{I}. The transpose matrix \mathbf{A}^{T} has elements $\left(\mathbf{A}^{\mathrm{T}}\right)_{i j}=A_{j i}$. From the definition of transpose, we have

$$
\begin{equation*}
(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \tag{C.1}
\end{equation*}
$$

which can be verified by writing out the indices. The inverse of \mathbf{A}, denoted \mathbf{A}^{-1}, satisfies

$$
\begin{equation*}
\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \tag{C.2}
\end{equation*}
$$

Because $\mathbf{A B B}{ }^{-1} \mathbf{A}^{-1}=\mathbf{I}$, we have

$$
\begin{equation*}
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} . \tag{C.3}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\left(\mathbf{A}^{\mathrm{T}}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\mathrm{T}} \tag{C.4}
\end{equation*}
$$

which is easily proven by taking the transpose of (C.2) and applying (C.1).
A useful identity involving matrix inverses is the following

$$
\begin{equation*}
\left(\mathbf{P}^{-1}+\mathbf{B}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{B}\right)^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{R}^{-1}=\mathbf{P B}^{\mathrm{T}}\left(\mathbf{B P} \mathbf{B}^{\mathrm{T}}+\mathbf{R}\right)^{-1} \tag{C.5}
\end{equation*}
$$

which is easily verified by right multiplying both sides by $\left(\mathbf{B P B}^{\mathrm{T}}+\mathbf{R}\right)$. Suppose that \mathbf{P} has dimensionality $N \times N$ while \mathbf{R} has dimensionality $M \times M$, so that \mathbf{B} is $M \times N$. Then if $M \ll N$, it will be much cheaper to evaluate the right-hand side of (C.5) than the left-hand side. A special case that sometimes arises is

$$
\begin{equation*}
(\mathbf{I}+\mathbf{A B})^{-1} \mathbf{A}=\mathbf{A}(\mathbf{I}+\mathbf{B} \mathbf{A})^{-1} \tag{C.6}
\end{equation*}
$$

Another useful identity involving inverses is the following:

$$
\begin{equation*}
\left(\mathbf{A}+\mathbf{B D}^{-1} \mathbf{C}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{D}+\mathbf{C A}^{-1} \mathbf{B}\right)^{-1} \mathbf{C A}^{-1} \tag{C.7}
\end{equation*}
$$

which is known as the Woodbury identity and which can be verified by multiplying both sides by $\left(\mathbf{A}+\mathbf{B D}^{-1} \mathbf{C}\right)$. This is useful, for instance, when \mathbf{A} is large and diagonal, and hence easy to invert, while \mathbf{B} has many rows but few columns (and conversely for \mathbf{C}) so that the right-hand side is much cheaper to evaluate than the left-hand side.

A set of vectors $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}$ is said to be linearly independent if the relation $\sum_{n} \alpha_{n} \mathbf{a}_{n}=0$ holds only if all $\alpha_{n}=0$. This implies that none of the vectors can be expressed as a linear combination of the remainder. The rank of a matrix is the maximum number of linearly independent rows (or equivalently the maximum number of linearly independent columns).

Traces and Determinants

Trace and determinant apply to square matrices. The trace $\operatorname{Tr}(\mathbf{A})$ of a matrix \mathbf{A} is defined as the sum of the elements on the leading diagonal. By writing out the indices, we see that

$$
\begin{equation*}
\operatorname{Tr}(\mathbf{A B})=\operatorname{Tr}(\mathbf{B A}) \tag{C.8}
\end{equation*}
$$

By applying this formula multiple times to the product of three matrices, we see that

$$
\begin{equation*}
\operatorname{Tr}(\mathbf{A B C})=\operatorname{Tr}(\mathbf{C A B})=\operatorname{Tr}(\mathbf{B C A}) \tag{C.9}
\end{equation*}
$$

which is known as the cyclic property of the trace operator and which clearly extends to the product of any number of matrices. The determinant $|\mathbf{A}|$ of an $N \times N$ matrix A is defined by

$$
\begin{equation*}
|\mathbf{A}|=\sum(\pm 1) A_{1 i_{1}} A_{2 i_{2}} \cdots A_{N i_{N}} \tag{C.10}
\end{equation*}
$$

in which the sum is taken over all products consisting of precisely one element from each row and one element from each column, with a coefficient +1 or -1 according
to whether the permutation $i_{1} i_{2} \ldots i_{N}$ is even or odd, respectively. Note that $|\mathbf{I}|=1$. Thus, for a 2×2 matrix, the determinant takes the form

$$
|\mathbf{A}|=\left|\begin{array}{ll}
a_{11} & a_{12} \tag{C.11}\\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

The determinant of a product of two matrices is given by

$$
\begin{equation*}
|\mathbf{A B}|=|\mathbf{A}||\mathbf{B}| \tag{C.12}
\end{equation*}
$$

as can be shown from (C.10). Also, the determinant of an inverse matrix is given by

$$
\begin{equation*}
\left|\mathbf{A}^{-1}\right|=\frac{1}{|\mathbf{A}|} \tag{C.13}
\end{equation*}
$$

which can be shown by taking the determinant of (C.2) and applying (C.12).
If \mathbf{A} and \mathbf{B} are matrices of size $N \times M$, then

$$
\begin{equation*}
\left|\mathbf{I}_{N}+\mathbf{A} \mathbf{B}^{\mathrm{T}}\right|=\left|\mathbf{I}_{M}+\mathbf{A}^{\mathrm{T}} \mathbf{B}\right| . \tag{C.14}
\end{equation*}
$$

A useful special case is

$$
\begin{equation*}
\left|\mathbf{I}_{N}+\mathbf{a b}^{\mathrm{T}}\right|=1+\mathbf{a}^{\mathrm{T}} \mathbf{b} \tag{C.15}
\end{equation*}
$$

where \mathbf{a} and \mathbf{b} are N-dimensional column vectors.

Matrix Derivatives

Sometimes we need to consider derivatives of vectors and matrices with respect to scalars. The derivative of a vector a with respect to a scalar x is itself a vector whose components are given by

$$
\begin{equation*}
\left(\frac{\partial \mathbf{a}}{\partial x}\right)_{i}=\frac{\partial a_{i}}{\partial x} \tag{C.16}
\end{equation*}
$$

with an analogous definition for the derivative of a matrix. Derivatives with respect to vectors and matrices can also be defined, for instance

$$
\begin{equation*}
\left(\frac{\partial x}{\partial \mathbf{a}}\right)_{i}=\frac{\partial x}{\partial a_{i}} \tag{C.17}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\left(\frac{\partial \mathbf{a}}{\partial \mathbf{b}}\right)_{i j}=\frac{\partial a_{i}}{\partial b_{j}} \tag{C.18}
\end{equation*}
$$

The following is easily proven by writing out the components

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{\mathrm{T}} \mathbf{a}\right)=\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{a}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{a} \tag{C.19}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{x}}(\mathbf{A B})=\frac{\partial \mathbf{A}}{\partial \mathbf{x}} \mathbf{B}+\mathbf{A} \frac{\partial \mathbf{B}}{\partial \mathbf{x}} \tag{C.20}
\end{equation*}
$$

The derivative of the inverse of a matrix can be expressed as

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\mathbf{A}^{-1}\right)=-\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x} \mathbf{A}^{-1} \tag{C.21}
\end{equation*}
$$

as can be shown by differentiating the equation $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ using (C.20) and then right multiplying by \mathbf{A}^{-1}. Also

$$
\begin{equation*}
\frac{\partial}{\partial x} \ln |\mathbf{A}|=\operatorname{Tr}\left(\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x}\right) \tag{C.22}
\end{equation*}
$$

which we shall prove later. If we choose x to be one of the elements of \mathbf{A}, we have

$$
\begin{equation*}
\frac{\partial}{\partial A_{i j}} \operatorname{Tr}(\mathbf{A B})=B_{j i} \tag{C.23}
\end{equation*}
$$

as can be seen by writing out the matrices using index notation. We can write this result more compactly in the form

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{A}} \operatorname{Tr}(\mathbf{A B})=\mathbf{B}^{\mathrm{T}} \tag{C.24}
\end{equation*}
$$

With this notation, we have the following properties

$$
\begin{align*}
\frac{\partial}{\partial \mathbf{A}} \operatorname{Tr}\left(\mathbf{A}^{\mathrm{T}} \mathbf{B}\right) & =\mathbf{B} \tag{C.25}\\
\frac{\partial}{\partial \mathbf{A}} \operatorname{Tr}(\mathbf{A}) & =\mathbf{I} \tag{C.26}\\
\frac{\partial}{\partial \mathbf{A}} \operatorname{Tr}\left(\mathbf{A B} \mathbf{A}^{\mathrm{T}}\right) & =\mathbf{A}\left(\mathbf{B}+\mathbf{B}^{\mathrm{T}}\right) \tag{C.27}
\end{align*}
$$

which can again be proven by writing out the matrix indices. We also have

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{A}} \ln |\mathbf{A}|=\left(\mathbf{A}^{-1}\right)^{\mathrm{T}} \tag{C.28}
\end{equation*}
$$

which follows from (C.22) and (C.26).

Eigenvector Equation

For a square matrix \mathbf{A} of size $M \times M$, the eigenvector equation is defined by

$$
\begin{equation*}
\mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \tag{C.29}
\end{equation*}
$$

for $i=1, \ldots, M$, where \mathbf{u}_{i} is an eigenvector and λ_{i} is the corresponding eigenvalue. This can be viewed as a set of M simultaneous homogeneous linear equations, and the condition for a solution is that

$$
\begin{equation*}
\left|\mathbf{A}-\lambda_{i} \mathbf{I}\right|=0 \tag{C.30}
\end{equation*}
$$

which is known as the characteristic equation. Because this is a polynomial of order M in λ_{i}, it must have M solutions (though these need not all be distinct). The rank of \mathbf{A} is equal to the number of nonzero eigenvalues.

Of particular interest are symmetric matrices, which arise as covariance matrices, kernel matrices, and Hessians. Symmetric matrices have the property that $A_{i j}=A_{j i}$, or equivalently $\mathbf{A}^{\mathrm{T}}=\mathbf{A}$. The inverse of a symmetric matrix is also symmetric, as can be seen by taking the transpose of $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ and using $\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$ together with the symmetry of \mathbf{I}.

In general, the eigenvalues of a matrix are complex numbers, but for symmetric matrices the eigenvalues λ_{i} are real. This can be seen by first left multiplying (C.29) by $\left(\mathbf{u}_{i}^{\star}\right)^{\mathrm{T}}$, where \star denotes the complex conjugate, to give

$$
\begin{equation*}
\left(\mathbf{u}_{i}^{\star}\right)^{\mathrm{T}} \mathbf{A} \mathbf{u}_{i}=\lambda_{i}\left(\mathbf{u}_{i}^{\star}\right)^{\mathrm{T}} \mathbf{u}_{i} \tag{C.31}
\end{equation*}
$$

Next we take the complex conjugate of (C.29) and left multiply by $\mathbf{u}_{i}^{\mathrm{T}}$ to give

$$
\begin{equation*}
\mathbf{u}_{i}^{\mathrm{T}} \mathbf{A} \mathbf{u}_{i}^{\star}=\lambda_{i}^{\star} \mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{i}^{\star} . \tag{C.32}
\end{equation*}
$$

where we have used $\mathbf{A}^{\star}=\mathbf{A}$ because we consider only real matrices \mathbf{A}. Taking the transpose of the second of these equations, and using $\mathbf{A}^{\mathrm{T}}=\mathbf{A}$, we see that the left-hand sides of the two equations are equal, and hence that $\lambda_{i}^{\star}=\lambda_{i}$ and so λ_{i} must be real.

The eigenvectors \mathbf{u}_{i} of a real symmetric matrix can be chosen to be orthonormal (i.e., orthogonal and of unit length) so that

$$
\begin{equation*}
\mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j}=I_{i j} \tag{C.33}
\end{equation*}
$$

where $I_{i j}$ are the elements of the identity matrix \mathbf{I}. To show this, we first left multiply (C.29) by $\mathbf{u}_{j}^{\mathrm{T}}$ to give

$$
\begin{equation*}
\mathbf{u}_{j}^{\mathrm{T}} \mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{j}^{\mathrm{T}} \mathbf{u}_{i} \tag{C.34}
\end{equation*}
$$

and hence, by exchange of indices, we have

$$
\begin{equation*}
\mathbf{u}_{i}^{\mathrm{T}} \mathbf{A} \mathbf{u}_{j}=\lambda_{j} \mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j} \tag{C.35}
\end{equation*}
$$

We now take the transpose of the second equation and make use of the symmetry property $\mathbf{A}^{\mathrm{T}}=\mathbf{A}$, and then subtract the two equations to give

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right) \mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j}=0 \tag{C.36}
\end{equation*}
$$

Hence, for $\lambda_{i} \neq \lambda_{j}$, we have $\mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j}=0$, and hence \mathbf{u}_{i} and \mathbf{u}_{j} are orthogonal. If the two eigenvalues are equal, then any linear combination $\alpha \mathbf{u}_{i}+\beta \mathbf{u}_{j}$ is also an eigenvector with the same eigenvalue, so we can select one linear combination arbitrarily,
and then choose the second to be orthogonal to the first (it can be shown that the degenerate eigenvectors are never linearly dependent). Hence the eigenvectors can be chosen to be orthogonal, and by normalizing can be set to unit length. Because there are M eigenvalues, the corresponding M orthogonal eigenvectors form a complete set and so any M-dimensional vector can be expressed as a linear combination of the eigenvectors.

We can take the eigenvectors \mathbf{u}_{i} to be the columns of an $M \times M$ matrix \mathbf{U}, which from orthonormality satisfies

$$
\begin{equation*}
\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I} \tag{C.37}
\end{equation*}
$$

Such a matrix is said to be orthogonal. Interestingly, the rows of this matrix are also orthogonal, so that $\mathbf{U U}^{\mathrm{T}}=\mathbf{I}$. To show this, note that (C.37) implies $\mathbf{U}^{\mathrm{T}} \mathbf{U U}^{-1}=$ $\mathbf{U}^{-1}=\mathbf{U}^{\mathrm{T}}$ and so $\mathbf{U U}^{-1}=\mathbf{U} \mathbf{U}^{\mathrm{T}}=\mathbf{I}$. Using (C.12), it also follows that $|\mathbf{U}|=1$.

The eigenvector equation (C.29) can be expressed in terms of \mathbf{U} in the form

$$
\begin{equation*}
\mathbf{A U}=\mathbf{U} \boldsymbol{\Lambda} \tag{C.38}
\end{equation*}
$$

where Λ is an $M \times M$ diagonal matrix whose diagonal elements are given by the eigenvalues λ_{i}.

If we consider a column vector \mathbf{x} that is transformed by an orthogonal matrix \mathbf{U} to give a new vector

$$
\begin{equation*}
\widetilde{\mathbf{x}}=\mathbf{U x} \tag{C.39}
\end{equation*}
$$

then the length of the vector is preserved because

$$
\begin{equation*}
\widetilde{\mathbf{x}}^{\mathrm{T}} \widetilde{\mathbf{x}}=\mathbf{x}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{U} \mathbf{x}=\mathbf{x}^{\mathrm{T}} \mathbf{x} \tag{C.40}
\end{equation*}
$$

and similarly the angle between any two such vectors is preserved because

$$
\begin{equation*}
\widetilde{\mathbf{x}}^{\mathrm{T}} \widetilde{\mathbf{y}}=\mathbf{x}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{U} \mathbf{y}=\mathbf{x}^{\mathrm{T}} \mathbf{y} \tag{C.41}
\end{equation*}
$$

Thus, multiplication by \mathbf{U} can be interpreted as a rigid rotation of the coordinate system.

From (C.38), it follows that

$$
\begin{equation*}
\mathbf{U}^{\mathrm{T}} \mathbf{A U}=\boldsymbol{\Lambda} \tag{C.42}
\end{equation*}
$$

and because $\boldsymbol{\Lambda}$ is a diagonal matrix, we say that the matrix \mathbf{A} is diagonalized by the matrix \mathbf{U}. If we left multiply by \mathbf{U} and right multiply by \mathbf{U}^{T}, we obtain

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}} \tag{C.43}
\end{equation*}
$$

Taking the inverse of this equation, and using (C.3) together with $\mathbf{U}^{-1}=\mathbf{U}^{\mathrm{T}}$, we have

$$
\begin{equation*}
\mathbf{A}^{-1}=\mathbf{U} \boldsymbol{\Lambda}^{-1} \mathbf{U}^{\mathrm{T}} \tag{C.44}
\end{equation*}
$$

These last two equations can also be written in the form

$$
\begin{align*}
\mathbf{A} & =\sum_{i=1}^{M} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}} \tag{C.45}\\
\mathbf{A}^{-1} & =\sum_{i=1}^{M} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}} . \tag{C.46}
\end{align*}
$$

If we take the determinant of (C.43), and use (C.12), we obtain

$$
\begin{equation*}
|\mathbf{A}|=\prod_{i=1}^{M} \lambda_{i} \tag{C.47}
\end{equation*}
$$

Similarly, taking the trace of (C.43), and using the cyclic property (C.8) of the trace operator together with $\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I}$, we have

$$
\begin{equation*}
\operatorname{Tr}(\mathbf{A})=\sum_{i=1}^{M} \lambda_{i} \tag{C.48}
\end{equation*}
$$

We leave it as an exercise for the reader to verify (C.22) by making use of the results (C.33), (C.45), (C.46), and (C.47).

A matrix \mathbf{A} is said to be positive definite, denoted by $\mathbf{A} \succ 0$, if $\mathbf{w}^{\mathrm{T}} \mathbf{A w}>0$ for all values of the vector \mathbf{w}. Equivalently, a positive definite matrix has $\lambda_{i}>0$ for all of its eigenvalues (as can be seen by setting \mathbf{w} to each of the eigenvectors in turn, and by noting that an arbitrary vector can be expanded as a linear combination of the eigenvectors). Note that positive definite is not the same as all the elements being positive. For example, the matrix

$$
\left(\begin{array}{ll}
1 & 2 \tag{C.49}\\
3 & 4
\end{array}\right)
$$

has eigenvalues $\lambda_{1} \simeq 5.37$ and $\lambda_{2} \simeq-0.37$. A matrix is said to be positive semidefinite if $\mathbf{w}^{\mathrm{T}} \mathbf{A} \mathbf{w} \geqslant 0$ holds for all values of \mathbf{w}, which is denoted $\mathbf{A} \succeq 0$, and is equivalent to $\lambda_{i} \geqslant 0$.

