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case, because they apply to any choice for the distribution p(x, t), so long as both

the training and the test examples are drawn (independently) from the same distribu-

tion, and for any choice for the function f(x) so long as it belongs toF . In real-world

applications of machine learning, we deal with distributions that have significant reg-

ularity, for example in which large regions of input space carry the same class label.

As a consequence of the lack of any assumptions about the form of the distribution,

the PAC bounds are very conservative, in other words they strongly over-estimate

the size of data sets required to achieve a given generalization performance. For this

reason, PAC bounds have found few, if any, practical applications.

One attempt to improve the tightness of the PAC bounds is the PAC-Bayesian

framework (McAllester, 2003), which considers a distribution over the space F of

functions, somewhat analogous to the prior in a Bayesian treatment. This still con-

siders any possible choice for p(x, t), and so although the bounds are tighter, they

are still very conservative.

7.2. Relevance Vector Machines

Support vector machines have been used in a variety of classification and regres-

sion applications. Nevertheless, they suffer from a number of limitations, several

of which have been highlighted already in this chapter. In particular, the outputs of

an SVM represent decisions rather than posterior probabilities. Also, the SVM was

originally formulated for two classes, and the extension to K > 2 classes is prob-

lematic. There is a complexity parameterC, or ν (as well as a parameter ǫ in the case

of regression), that must be found using a hold-out method such as cross-validation.

Finally, predictions are expressed as linear combinations of kernel functions that are

centred on training data points and that are required to be positive definite.

The relevance vector machine or RVM (Tipping, 2001) is a Bayesian sparse ker-

nel technique for regression and classification that shares many of the characteristics

of the SVM whilst avoiding its principal limitations. Additionally, it typically leads

to much sparser models resulting in correspondingly faster performance on test data

whilst maintaining comparable generalization error.

In contrast to the SVM we shall find it more convenient to introduce the regres-

sion form of the RVM first and then consider the extension to classification tasks.

7.2.1 RVM for regression

The relevance vector machine for regression is a linear model of the form studied

in Chapter 3 but with a modified prior that results in sparse solutions. The model

defines a conditional distribution for a real-valued target variable t, given an input

vector x, which takes the form

p(t|x,w, β) = N (t|y(x), β−1) (7.76)
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where β = σ−2 is the noise precision (inverse noise variance), and the mean is given

by a linear model of the form

y(x) =

M∑

i=1

wiφi(x) = wTφ(x) (7.77)

with fixed nonlinear basis functions φi(x), which will typically include a constant

term so that the corresponding weight parameter represents a ‘bias’.

The relevance vector machine is a specific instance of this model, which is in-

tended to mirror the structure of the support vector machine. In particular, the basis

functions are given by kernels, with one kernel associated with each of the data

points from the training set. The general expression (7.77) then takes the SVM-like

form

y(x) =

N∑

n=1

wnk(x,xn) + b (7.78)

where b is a bias parameter. The number of parameters in this case is M = N + 1,
and y(x) has the same form as the predictive model (7.64) for the SVM, except that

the coefficients an are here denoted wn. It should be emphasized that the subsequent

analysis is valid for arbitrary choices of basis function, and for generality we shall

work with the form (7.77). In contrast to the SVM, there is no restriction to positive-

definite kernels, nor are the basis functions tied in either number or location to the

training data points.

Suppose we are given a set of N observations of the input vector x, which we

denote collectively by a data matrixX whose nth row is xTn with n = 1, . . . , N . The

corresponding target values are given by t = (t1, . . . , tN )T. Thus, the likelihood

function is given by

p(t|X,w, β) =

N∏

n=1

p(tn|xn,w, β−1). (7.79)

Next we introduce a prior distribution over the parameter vector w and as in

Chapter 3, we shall consider a zero-mean Gaussian prior. However, the key differ-

ence in the RVM is that we introduce a separate hyperparameter αi for each of the

weight parameters wi instead of a single shared hyperparameter. Thus the weight

prior takes the form

p(w|α) =

M∏

i=1

N (wi|0, α
−1
i ) (7.80)

where αi represents the precision of the corresponding parameter wi, and α denotes

(α1, . . . , αM )T. We shall see that, when we maximize the evidence with respect

to these hyperparameters, a significant proportion of them go to infinity, and the

corresponding weight parameters have posterior distributions that are concentrated

at zero. The basis functions associated with these parameters therefore play no role
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in the predictions made by the model and so are effectively pruned out, resulting in

a sparse model.

Using the result (3.49) for linear regression models, we see that the posterior

distribution for the weights is again Gaussian and takes the form

p(w|t,X,α, β) = N (w|m,Σ) (7.81)

where the mean and covariance are given by

m = βΣΦTt (7.82)

Σ =
(
A+ βΦTΦ

)−1
(7.83)

where Φ is the N × M design matrix with elements Φni = φi(xn), and A =
diag(αi). Note that in the specific case of the model (7.78), we haveΦ = K, where

K is the symmetric (N + 1)× (N + 1) kernel matrix with elements k(xn,xm).
The values of α and β are determined using type-2 maximum likelihood, also

known as the evidence approximation, in which we maximize the marginal likeli-Section 3.5

hood function obtained by integrating out the weight parameters

p(t|X,α, β) =

∫
p(t|X,w, β)p(w|α) dw. (7.84)

Because this represents the convolution of two Gaussians, it is readily evaluated toExercise 7.10

give the log marginal likelihood in the form

ln p(t|X,α, β) = lnN (t|0,C)

= −
1

2

{
N ln(2π) + ln |C|+ tTC−1t

}
(7.85)

where t = (t1, . . . , tN )T, and we have defined the N ×N matrix C given by

C = β−1I+ΦA−1ΦT. (7.86)

Our goal is now to maximize (7.85) with respect to the hyperparameters α and

β. This requires only a small modification to the results obtained in Section 3.5 for

the evidence approximation in the linear regression model. Again, we can identify

two approaches. In the first, we simply set the required derivatives of the marginal

likelihood to zero and obtain the following re-estimation equationsExercise 7.12

αnew

i =
γi

m2

i

(7.87)

(βnew)−1 =
‖t−Φm‖2

N −
∑
i γi

(7.88)

where mi is the ith component of the posterior mean m defined by (7.82). The

quantity γi measures how well the corresponding parameter wi is determined by the

data and is defined bySection 3.5.3
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γi = 1− αiΣii (7.89)

in which Σii is the ith diagonal component of the posterior covariance Σ given by

(7.83). Learning therefore proceeds by choosing initial values for α and β, evalu-
ating the mean and covariance of the posterior using (7.82) and (7.83), respectively,

and then alternately re-estimating the hyperparameters, using (7.87) and (7.88), and

re-estimating the posterior mean and covariance, using (7.82) and (7.83), until a suit-

able convergence criterion is satisfied.

The second approach is to use the EM algorithm, and is discussed in Sec-

tion 9.3.4. These two approaches to finding the values of the hyperparameters that

maximize the evidence are formally equivalent. Numerically, however, it is foundExercise 9.23

that the direct optimization approach corresponding to (7.87) and (7.88) gives some-

what faster convergence (Tipping, 2001).

As a result of the optimization, we find that a proportion of the hyperparameters

{αi} are driven to large (in principle infinite) values, and so the weight parametersSection 7.2.2

wi corresponding to these hyperparameters have posterior distributions with mean

and variance both zero. Thus those parameters, and the corresponding basis func-

tions φi(x), are removed from the model and play no role in making predictions for

new inputs. In the case of models of the form (7.78), the inputs xn corresponding to

the remaining nonzero weights are called relevance vectors, because they are iden-

tified through the mechanism of automatic relevance determination, and are analo-

gous to the support vectors of an SVM. It is worth emphasizing, however, that this

mechanism for achieving sparsity in probabilistic models through automatic rele-

vance determination is quite general and can be applied to any model expressed as

an adaptive linear combination of basis functions.

Having found values α⋆ and β⋆ for the hyperparameters that maximize the

marginal likelihood, we can evaluate the predictive distribution over t for a new

input x. Using (7.76) and (7.81), this is given byExercise 7.14

p(t|x,X, t,α⋆, β⋆) =

∫
p(t|x,w, β⋆)p(w|X, t,α⋆, β⋆) dw

= N
(
t|mTφ(x), σ2(x)

)
. (7.90)

Thus the predictive mean is given by (7.76) with w set equal to the posterior mean

m, and the variance of the predictive distribution is given by

σ2(x) = (β⋆)−1 + φ(x)TΣφ(x) (7.91)

whereΣ is given by (7.83) in whichα and β are set to their optimized valuesα⋆ and

β⋆. This is just the familiar result (3.59) obtained in the context of linear regression.

Recall that for localized basis functions, the predictive variance for linear regression

models becomes small in regions of input space where there are no basis functions.

In the case of an RVMwith the basis functions centred on data points, the model will

therefore become increasingly certain of its predictions when extrapolating outside

the domain of the data (Rasmussen and Quiñonero-Candela, 2005), which of course

is undesirable. The predictive distribution in Gaussian process regression does notSection 6.4.2
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Figure 7.9 Illustration of RVM regression us-
ing the same data set, and the
same Gaussian kernel functions,
as used in Figure 7.8 for the
ν-SVM regression model. The
mean of the predictive distribu-
tion for the RVM is shown by the
red line, and the one standard-
deviation predictive distribution is
shown by the shaded region.
Also, the data points are shown
in green, and the relevance vec-
tors are indicated by blue circles.
Note that there are only 3 rele-
vance vectors compared to 7 sup-
port vectors for the ν-SVM in Fig-
ure 7.8.

x

t

0 1

−1

0

1

suffer from this problem. However, the computational cost of making predictions

with a Gaussian processes is typically much higher than with an RVM.

Figure 7.9 shows an example of the RVM applied to the sinusoidal regression

data set. Here the noise precision parameter β is also determined through evidence

maximization. We see that the number of relevance vectors in the RVM is signif-

icantly smaller than the number of support vectors used by the SVM. For a wide

range of regression and classification tasks, the RVM is found to give models that

are typically an order of magnitude more compact than the corresponding support

vector machine, resulting in a significant improvement in the speed of processing on

test data. Remarkably, this greater sparsity is achieved with little or no reduction in

generalization error compared with the corresponding SVM.

The principal disadvantage of the RVM compared to the SVM is that training

involves optimizing a nonconvex function, and training times can be longer than for a

comparable SVM. For a model with M basis functions, the RVM requires inversion

of a matrix of size M ×M , which in general requires O(M3) computation. In the

specific case of the SVM-like model (7.78), we haveM = N+1. As we have noted,

there are techniques for training SVMs whose cost is roughly quadratic in N . Of

course, in the case of the RVM we always have the option of starting with a smaller

number of basis functions than N + 1. More significantly, in the relevance vector

machine the parameters governing complexity and noise variance are determined

automatically from a single training run, whereas in the support vector machine the

parameters C and ǫ (or ν) are generally found using cross-validation, which involves

multiple training runs. Furthermore, in the next section we shall derive an alternative

procedure for training the relevance vector machine that improves training speed

significantly.

7.2.2 Analysis of sparsity

We have noted earlier that the mechanism of automatic relevance determination

causes a subset of parameters to be driven to zero. We now examine in more detail
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Figure 7.10 Illustration of the mechanism for sparsity in a Bayesian linear regression model, showing a training
set vector of target values given by t = (t1, t2)

T, indicated by the cross, for a model with one basis vector

ϕ = (φ(x1), φ(x2))
T, which is poorly aligned with the target data vector t. On the left we see a model having

only isotropic noise, so that C = β−1I, corresponding to α = ∞, with β set to its most probable value. On
the right we see the same model but with a finite value of α. In each case the red ellipse corresponds to unit
Mahalanobis distance, with |C| taking the same value for both plots, while the dashed green circle shows the
contrition arising from the noise term β−1. We see that any finite value of α reduces the probability of the
observed data, and so for the most probable solution the basis vector is removed.

the mechanism of sparsity in the context of the relevance vector machine. In the

process, we will arrive at a significantly faster procedure for optimizing the hyper-

parameters compared to the direct techniques given above.

Before proceeding with a mathematical analysis, we first give some informal

insight into the origin of sparsity in Bayesian linear models. Consider a data set

comprising N = 2 observations t1 and t2, together with a model having a single

basis function φ(x), with hyperparameter α, along with isotropic noise having pre-

cision β. From (7.85), the marginal likelihood is given by p(t|α, β) = N (t|0,C) in
which the covariance matrix takes the form

C =
1

β
I+

1

α
ϕϕT (7.92)

where ϕ denotes the N -dimensional vector (φ(x1), φ(x2))
T, and similarly t =

(t1, t2)
T. Notice that this is just a zero-mean Gaussian process model over t with

covariance C. Given a particular observation for t, our goal is to find α⋆ and β⋆ by
maximizing the marginal likelihood. We see from Figure 7.10 that, if there is a poor

alignment between the direction of ϕ and that of the training data vector t, then the

corresponding hyperparameter α will be driven to ∞, and the basis vector will be

pruned from the model. This arises because any finite value for α will always assign

a lower probability to the data, thereby decreasing the value of the density at t, pro-
vided that β is set to its optimal value. We see that any finite value for α would cause

the distribution to be elongated in a direction away from the data, thereby increasing

the probability mass in regions away from the observed data and hence reducing the

value of the density at the target data vector itself. For the more general case of M
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basis vectors ϕ
1
, . . . ,ϕM a similar intuition holds, namely that if a particular basis

vector is poorly aligned with the data vector t, then it is likely to be pruned from the

model.

We now investigate the mechanism for sparsity from a more mathematical per-

spective, for a general case involving M basis functions. To motivate this analysis

we first note that, in the result (7.87) for re-estimating the parameter αi, the terms on

the right-hand side are themselves also functions of αi. These results therefore rep-

resent implicit solutions, and iteration would be required even to determine a single

αi with all other αj for j )= i fixed.
This suggests a different approach to solving the optimization problem for the

RVM, in which we make explicit all of the dependence of the marginal likelihood

(7.85) on a particular αi and then determine its stationary points explicitly (Faul and

Tipping, 2002; Tipping and Faul, 2003). To do this, we first pull out the contribution

from αi in the matrix C defined by (7.86) to give

C = β−1I+
∑

j !=i

α−1j ϕjϕ
T

j + α−1i ϕiϕ
T

i

= C−i + α−1i ϕiϕ
T

i (7.93)

whereϕi denotes the i
th column ofΦ, in other words theN -dimensional vector with

elements (φi(x1), . . . , φi(xN )), in contrast to φn, which denotes the nth row of Φ.

The matrix C−i represents the matrix C with the contribution from basis function i
removed. Using the matrix identities (C.7) and (C.15), the determinant and inverse

of C can then be written

|C| = |C−i||1 + α−1i ϕ
T

i C
−1
−iϕi| (7.94)

C−1 = C−1−i −
C−1−iϕiϕ

T

i C
−1
−i

αi +ϕT

i C
−1
−iϕi

. (7.95)

Using these results, we can then write the log marginal likelihood function (7.85) in

the formExercise 7.15

L(α) = L(α−i) + λ(αi) (7.96)

where L(α−i) is simply the log marginal likelihood with basis function ϕi omitted,

and the quantity λ(αi) is defined by

λ(αi) =
1

2

[
lnαi − ln (αi + si) +

q2i
αi + si

]
(7.97)

and contains all of the dependence on αi. Here we have introduced the two quantities

si = ϕT

i C
−1
−iϕi (7.98)

qi = ϕT

i C
−1
−i t. (7.99)

Here si is called the sparsity and qi is known as the quality of ϕi, and as we shall

see, a large value of si relative to the value of qi means that the basis function ϕi
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Figure 7.11 Plots of the log
marginal likelihood λ(αi) versus
lnαi showing on the left, the single
maximum at a finite αi for q2i = 4
and si = 1 (so that q2i > si) and on
the right, the maximum at αi = ∞
for q2i = 1 and si = 2 (so that
q2i < si).
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is more likely to be pruned from the model. The ‘sparsity’ measures the extent to

which basis function ϕi overlaps with the other basis vectors in the model, and the

‘quality’ represents a measure of the alignment of the basis vector ϕn with the error

between the training set values t = (t1, . . . , tN )T and the vector y−i of predictions
that would result from the model with the vector ϕi excluded (Tipping and Faul,

2003).

The stationary points of the marginal likelihood with respect to αi occur when

the derivative
dλ(αi)

dαi
=

α−1i s2i − (q2i − si)

2(αi + si)2
(7.100)

is equal to zero. There are two possible forms for the solution. Recalling that αi � 0,
we see that if q2i < si, then αi →∞ provides a solution. Conversely, if q2i > si, we

can solve for αi to obtain

αi =
s2i

q2i − si
. (7.101)

These two solutions are illustrated in Figure 7.11. We see that the relative size of

the quality and sparsity terms determines whether a particular basis vector will be

pruned from the model or not. A more complete analysis (Faul and Tipping, 2002),

based on the second derivatives of the marginal likelihood, confirms these solutions

are indeed the unique maxima of λ(αi).Exercise 7.16

Note that this approach has yielded a closed-form solution for αi, for given

values of the other hyperparameters. As well as providing insight into the origin of

sparsity in the RVM, this analysis also leads to a practical algorithm for optimizing

the hyperparameters that has significant speed advantages. This uses a fixed set

of candidate basis vectors, and then cycles through them in turn to decide whether

each vector should be included in the model or not. The resulting sequential sparse

Bayesian learning algorithm is described below.

Sequential Sparse Bayesian Learning Algorithm

1. If solving a regression problem, initialize β.

2. Initialize using one basis function ϕ
1
, with hyperparameter α1 set using

(7.101), with the remaining hyperparameters αj for j )= i initialized to

infinity, so that only ϕ
1
is included in the model.
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3. Evaluate Σ andm, along with qi and si for all basis functions.

4. Select a candidate basis function ϕi.

5. If q2i > si, and αi < ∞, so that the basis vector ϕi is already included in

the model, then update αi using (7.101).

6. If q2i > si, and αi = ∞, then add ϕi to the model, and evaluate hyperpa-

rameter αi using (7.101).

7. If q2i  si, and αi < ∞ then remove basis function ϕi from the model,

and set αi = ∞.

8. If solving a regression problem, update β.

9. If converged terminate, otherwise go to 3.

Note that if q2i  si and αi = ∞, then the basis function ϕi is already excluded

from the model and no action is required.

In practice, it is convenient to evaluate the quantities

Qi = ϕT

i C
−1t (7.102)

Si = ϕT

i C
−1ϕi. (7.103)

The quality and sparseness variables can then be expressed in the form

qi =
αiQi

αi − Si
(7.104)

si =
αiSi

αi − Si
. (7.105)

Note that when αi = ∞, we have qi = Qi and si = Si. Using (C.7), we can writeExercise 7.17

Qi = βϕT

i t− β2ϕT

i ΦΣΦ
Tt (7.106)

Si = βϕT

i ϕi − β2ϕT

i ΦΣΦ
Tϕi (7.107)

where Φ and Σ involve only those basis vectors that correspond to finite hyperpa-

rameters αi. At each stage the required computations therefore scale like O(M3),
where M is the number of active basis vectors in the model and is typically much

smaller than the number N of training patterns.

7.2.3 RVM for classification

We can extend the relevance vector machine framework to classification prob-

lems by applying the ARD prior over weights to a probabilistic linear classification

model of the kind studied in Chapter 4. To start with, we consider two-class prob-

lems with a binary target variable t ∈ {0, 1}. The model now takes the form of a

linear combination of basis functions transformed by a logistic sigmoid function

y(x,w) = σ
(
wTφ(x)

)
(7.108)
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where σ(·) is the logistic sigmoid function defined by (4.59). If we introduce a

Gaussian prior over the weight vector w, then we obtain the model that has been

considered already in Chapter 4. The difference here is that in the RVM, this model

uses the ARD prior (7.80) in which there is a separate precision hyperparameter

associated with each weight parameter.

In contrast to the regression model, we can no longer integrate analytically over

the parameter vector w. Here we follow Tipping (2001) and use the Laplace ap-

proximation, which was applied to the closely related problem of Bayesian logisticSection 4.4

regression in Section 4.5.1.

We begin by initializing the hyperparameter vector α. For this given value of

α, we then build a Gaussian approximation to the posterior distribution and thereby

obtain an approximation to the marginal likelihood. Maximization of this approxi-

mate marginal likelihood then leads to a re-estimated value for α, and the process is

repeated until convergence.

Let us consider the Laplace approximation for this model in more detail. For

a fixed value of α, the mode of the posterior distribution over w is obtained by

maximizing

ln p(w|t,α) = ln {p(t|w)p(w|α)} − ln p(t|α)

=

N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)} −
1

2
wTAw + const (7.109)

where A = diag(αi). This can be done using iterative reweighted least squares

(IRLS) as discussed in Section 4.3.3. For this, we need the gradient vector and

Hessian matrix of the log posterior distribution, which from (7.109) are given byExercise 7.18

∇ ln p(w|t,α) = ΦT(t− y)−Aw (7.110)

∇∇ ln p(w|t,α) = −
(
ΦTBΦ+A

)
(7.111)

where B is an N × N diagonal matrix with elements bn = yn(1 − yn), the vector

y = (y1, . . . , yN )T, and Φ is the design matrix with elements Φni = φi(xn). Here

we have used the property (4.88) for the derivative of the logistic sigmoid function.

At convergence of the IRLS algorithm, the negative Hessian represents the inverse

covariance matrix for the Gaussian approximation to the posterior distribution.

The mode of the resulting approximation to the posterior distribution, corre-

sponding to the mean of the Gaussian approximation, is obtained setting (7.110) to

zero, giving the mean and covariance of the Laplace approximation in the form

w⋆ = A−1ΦT(t− y) (7.112)

Σ =
(
ΦTBΦ+A

)−1
. (7.113)

We can now use this Laplace approximation to evaluate the marginal likelihood.

Using the general result (4.135) for an integral evaluated using the Laplace approxi-
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mation, we have

p(t|α) =

∫
p(t|w)p(w|α) dw

≃ p(t|w⋆)p(w⋆|α)(2π)M/2|Σ|1/2. (7.114)

If we substitute for p(t|w⋆) and p(w⋆|α) and then set the derivative of the marginal

likelihood with respect to αi equal to zero, we obtainExercise 7.19

−
1

2
(w⋆i )

2 +
1

2αi
−

1

2
Σii = 0. (7.115)

Defining γi = 1− αiΣii and rearranging then gives

αnew

i =
γi

(w⋆i )
2

(7.116)

which is identical to the re-estimation formula (7.87) obtained for the regression

RVM.

If we define

t̂ = Φw⋆ +B−1(t− y) (7.117)

we can write the approximate log marginal likelihood in the form

ln p(t|α, β) = −
1

2

{
N ln(2π) + ln |C|+ (̂t)TC−1̂t

}
(7.118)

where

C = B+ΦAΦT. (7.119)

This takes the same form as (7.85) in the regression case, and so we can apply the

same analysis of sparsity and obtain the same fast learning algorithm in which we

fully optimize a single hyperparameter αi at each step.

Figure 7.12 shows the relevance vector machine applied to a synthetic classifi-

cation data set. We see that the relevance vectors tend not to lie in the region of theAppendix A

decision boundary, in contrast to the support vector machine. This is consistent with

our earlier discussion of sparsity in the RVM, because a basis function φi(x) centred
on a data point near the boundary will have a vector ϕi that is poorly aligned with

the training data vector t.
One of the potential advantages of the relevance vector machine compared with

the SVM is that it makes probabilistic predictions. For example, this allows the RVM

to be used to help construct an emission density in a nonlinear extension of the linear

dynamical system for tracking faces in video sequences (Williams et al., 2005).Section 13.3

So far, we have considered the RVM for binary classification problems. For

K > 2 classes, we again make use of the probabilistic approach in Section 4.3.4 in

which there are K linear models of the form

ak = wT

k x (7.120)
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a Bayesian approach, like any approach to pattern recognition, needs to make as-

sumptions about the form of the model, and if these are invalid then the results can

be misleading. In particular, we see from Figure 3.12 that the model evidence can

be sensitive to many aspects of the prior, such as the behaviour in the tails. Indeed,

the evidence is not defined if the prior is improper, as can be seen by noting that

an improper prior has an arbitrary scaling factor (in other words, the normalization

coefficient is not defined because the distribution cannot be normalized). If we con-

sider a proper prior and then take a suitable limit in order to obtain an improper prior

(for example, a Gaussian prior in which we take the limit of infinite variance) then

the evidence will go to zero, as can be seen from (3.70) and Figure 3.12. It may,

however, be possible to consider the evidence ratio between two models first and

then take a limit to obtain a meaningful answer.

In a practical application, therefore, it will be wise to keep aside an independent

test set of data on which to evaluate the overall performance of the final system.

3.5. The Evidence Approximation

In a fully Bayesian treatment of the linear basis function model, we would intro-

duce prior distributions over the hyperparameters α and β and make predictions by

marginalizing with respect to these hyperparameters as well as with respect to the

parameters w. However, although we can integrate analytically over either w or

over the hyperparameters, the complete marginalization over all of these variables

is analytically intractable. Here we discuss an approximation in which we set the

hyperparameters to specific values determined by maximizing the marginal likeli-

hood function obtained by first integrating over the parameters w. This framework

is known in the statistics literature as empirical Bayes (Bernardo and Smith, 1994;

Gelman et al., 2004), or type 2 maximum likelihood (Berger, 1985), or generalized

maximum likelihood (Wahba, 1975), and in the machine learning literature is also

called the evidence approximation (Gull, 1989; MacKay, 1992a).

If we introduce hyperpriors over α and β, the predictive distribution is obtained

by marginalizing over w, α and β so that

p(t|t) =

∫∫∫
p(t|w, β)p(w|t, α, β)p(α, β|t) dw dα dβ (3.74)

where p(t|w, β) is given by (3.8) and p(w|t, α, β) is given by (3.49) withmN and

SN defined by (3.53) and (3.54) respectively. Here we have omitted the dependence

on the input variable x to keep the notation uncluttered. If the posterior distribution

p(α, β|t) is sharply peaked around values α̂ and β̂, then the predictive distribution is

obtained simply by marginalizing overw in which α and β are fixed to the values α̂

and β̂, so that

p(t|t) ≃ p(t|t, α̂, β̂) =

∫
p(t|w, β̂)p(w|t, α̂, β̂) dw. (3.75)
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From Bayes’ theorem, the posterior distribution for α and β is given by

p(α, β|t) ∝ p(t|α, β)p(α, β). (3.76)

If the prior is relatively flat, then in the evidence framework the values of α̂ and

β̂ are obtained by maximizing the marginal likelihood function p(t|α, β). We shall

proceed by evaluating the marginal likelihood for the linear basis function model and

then finding its maxima. This will allow us to determine values for these hyperpa-

rameters from the training data alone, without recourse to cross-validation. Recall

that the ratio α/β is analogous to a regularization parameter.

As an aside it is worth noting that, if we define conjugate (Gamma) prior distri-

butions over α and β, then the marginalization over these hyperparameters in (3.74)

can be performed analytically to give a Student’s t-distribution over w (see Sec-

tion 2.3.7). Although the resulting integral overw is no longer analytically tractable,

it might be thought that approximating this integral, for example using the Laplace

approximation discussed (Section 4.4) which is based on a local Gaussian approxi-

mation centred on the mode of the posterior distribution, might provide a practical

alternative to the evidence framework (Buntine and Weigend, 1991). However, the

integrand as a function ofw typically has a strongly skewed mode so that the Laplace

approximation fails to capture the bulk of the probability mass, leading to poorer re-

sults than those obtained by maximizing the evidence (MacKay, 1999).

Returning to the evidence framework, we note that there are two approaches that

we can take to the maximization of the log evidence. We can evaluate the evidence

function analytically and then set its derivative equal to zero to obtain re-estimation

equations for α and β, which we shall do in Section 3.5.2. Alternatively we use a

technique called the expectation maximization (EM) algorithm, which will be dis-

cussed in Section 9.3.4 where we shall also show that these two approaches converge

to the same solution.

3.5.1 Evaluation of the evidence function

The marginal likelihood function p(t|α, β) is obtained by integrating over the

weight parameters w, so that

p(t|α, β) =

∫
p(t|w, β)p(w|α) dw. (3.77)

One way to evaluate this integral is to make use once again of the result (2.115)

for the conditional distribution in a linear-Gaussian model. Here we shall evaluateExercise 3.16

the integral instead by completing the square in the exponent and making use of the

standard form for the normalization coefficient of a Gaussian.

From (3.11), (3.12), and (3.52), we can write the evidence function in the formExercise 3.17

p(t|α, β) =

(
β

2π

)N/2 ( α

2π

)M/2 ∫
exp {−E(w)} dw (3.78)
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whereM is the dimensionality ofw, and we have defined

E(w) = βED(w) + αEW (w)

=
β

2
‖t −Φw‖

2
+
α

2
w

T
w. (3.79)

We recognize (3.79) as being equal, up to a constant of proportionality, to the reg-

ularized sum-of-squares error function (3.27). We now complete the square over wExercise 3.18

giving

E(w) = E(mN ) +
1

2
(w −mN )TA(w −mN ) (3.80)

where we have introduced

A = αI+ βΦT
Φ (3.81)

together with

E(mN ) =
β

2
‖t −ΦmN‖

2
+
α

2
m

T

NmN . (3.82)

Note thatA corresponds to the matrix of second derivatives of the error function

A = ∇∇E(w) (3.83)

and is known as the Hessian matrix. Here we have also definedmN given by

mN = βA−1ΦTt. (3.84)

Using (3.54), we see that A = S
−1

N , and hence (3.84) is equivalent to the previous

definition (3.53), and therefore represents the mean of the posterior distribution.

The integral over w can now be evaluated simply by appealing to the standard

result for the normalization coefficient of a multivariate Gaussian, givingExercise 3.19

∫
exp {−E(w)} dw

= exp{−E(mN )}

∫
exp

{
−

1

2
(w −mN )TA(w −mN )

}
dw

= exp{−E(mN )}(2π)M/2|A|−1/2. (3.85)

Using (3.78) we can then write the log of the marginal likelihood in the form

ln p(t|α, β) =
M

2
lnα+

N

2
lnβ − E(mN ) −

1

2
ln |A| −

N

2
ln(2π) (3.86)

which is the required expression for the evidence function.

Returning to the polynomial regression problem, we can plot the model evidence

against the order of the polynomial, as shown in Figure 3.14. Here we have assumed

a prior of the form (1.65) with the parameter α fixed at α = 5 × 10−3. The form

of this plot is very instructive. Referring back to Figure 1.4, we see that theM = 0
polynomial has very poor fit to the data and consequently gives a relatively low value
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Figure 3.14 Plot of the model evidence versus
the orderM , for the polynomial re-
gression model, showing that the
evidence favours the model with
M = 3.

M
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for the evidence. Going to theM = 1 polynomial greatly improves the data fit, and

hence the evidence is significantly higher. However, in going to M = 2, the data

fit is improved only very marginally, due to the fact that the underlying sinusoidal

function from which the data is generated is an odd function and so has no even terms

in a polynomial expansion. Indeed, Figure 1.5 shows that the residual data error is

reduced only slightly in going from M = 1 to M = 2. Because this richer model

suffers a greater complexity penalty, the evidence actually falls in going fromM = 1
to M = 2. When we go to M = 3 we obtain a significant further improvement in

data fit, as seen in Figure 1.4, and so the evidence is increased again, giving the

highest overall evidence for any of the polynomials. Further increases in the value

of M produce only small improvements in the fit to the data but suffer increasing

complexity penalty, leading overall to a decrease in the evidence values. Looking

again at Figure 1.5, we see that the generalization error is roughly constant between

M = 3 and M = 8, and it would be difficult to choose between these models on

the basis of this plot alone. The evidence values, however, show a clear preference

for M = 3, since this is the simplest model which gives a good explanation for the

observed data.

3.5.2 Maximizing the evidence function

Let us first consider the maximization of p(t|α, β) with respect to α. This can

be done by first defining the following eigenvector equation
(
βΦT

Φ
)
ui = λiui. (3.87)

From (3.81), it then follows thatA has eigenvalues α+λi. Now consider the deriva-

tive of the term involving ln |A| in (3.86) with respect to α. We have

d

dα
ln |A| =

d

dα
ln
∏

i

(λi + α) =
d

dα

∑

i

ln(λi + α) =
∑

i

1

λi + α
. (3.88)

Thus the stationary points of (3.86) with respect to α satisfy

0 =
M

2α
−

1

2
m

T

NmN −
1

2

∑

i

1

λi + α
. (3.89)



3.5. The Evidence Approximation 169

Multiplying through by 2α and rearranging, we obtain

αmT

NmN = M − α
∑

i

1

λi + α
= γ. (3.90)

Since there areM terms in the sum over i, the quantity γ can be written

γ =
∑

i

λi
α+ λi

. (3.91)

The interpretation of the quantity γ will be discussed shortly. From (3.90) we see

that the value of α that maximizes the marginal likelihood satisfiesExercise 3.20

α =
γ

mT

NmN
. (3.92)

Note that this is an implicit solution for α not only because γ depends on α, but also
because the mode mN of the posterior distribution itself depends on the choice of

α. We therefore adopt an iterative procedure in which we make an initial choice for

α and use this to find mN , which is given by (3.53), and also to evaluate γ, which

is given by (3.91). These values are then used to re-estimate α using (3.92), and the

process repeated until convergence. Note that because the matrix ΦT
Φ is fixed, we

can compute its eigenvalues once at the start and then simply multiply these by β to

obtain the λi.
It should be emphasized that the value of α has been determined purely by look-

ing at the training data. In contrast to maximum likelihood methods, no independent

data set is required in order to optimize the model complexity.

We can similarly maximize the log marginal likelihood (3.86) with respect to β.
To do this, we note that the eigenvalues λi defined by (3.87) are proportional to β,
and hence dλi/dβ = λi/β giving

d

dβ
ln |A| =

d

dβ

∑

i

ln(λi + α) =
1

β

∑

i

λi
λi + α

=
γ

β
. (3.93)

The stationary point of the marginal likelihood therefore satisfies

0 =
N

2β
−

1

2

N∑

n=1

{
tn −mT

Nφ(xn)
}2

−
γ

2β
(3.94)

and rearranging we obtainExercise 3.22

1

β
=

1

N − γ

N∑

n=1

{
tn −mT

Nφ(xn)
}2
. (3.95)

Again, this is an implicit solution for β and can be solved by choosing an initial

value for β and then using this to calculatemN and γ and then re-estimate β using

(3.95), repeating until convergence. If both α and β are to be determined from the

data, then their values can be re-estimated together after each update of γ.
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xa

xb = 0.7

xb

p(xa, xb)
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Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(xa, xb) over two variables, and
the plot on the right shows the marginal distribution p(xa) (blue curve) and the conditional distribution p(xa|xb)
for xb = 0.7 (red curve).

Σ =

(

Σaa Σab

Σba Σbb

)

, Λ =

(

Λaa Λab

Λba Λbb

)

. (2.95)

Conditional distribution:

p(xa|xb) = N (x|µa|b,Λ
−1

aa
) (2.96)

µa|b = µa −Λ−1

aa
Λab(xb − µb). (2.97)

Marginal distribution:

p(xa) = N (xa|µa,Σaa). (2.98)

We illustrate the idea of conditional and marginal distributions associated with

a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes’ theorem for Gaussian variables

In Sections 2.3.1 and 2.3.2, we considered a Gaussian p(x) in which we parti-

tioned the vector x into two subvectors x = (xa,xb) and then found expressions for
the conditional distribution p(xa|xb) and the marginal distribution p(xa). We noted

that the mean of the conditional distribution p(xa|xb) was a linear function of xb.

Here we shall suppose that we are given a Gaussian marginal distribution p(x) and a
Gaussian conditional distribution p(y|x) in which p(y|x) has a mean that is a linear

function of x, and a covariance which is independent of x. This is an example of
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a linear Gaussian model (Roweis and Ghahramani, 1999), which we shall study in

greater generality in Section 8.1.4. We wish to find the marginal distribution p(y)
and the conditional distribution p(x|y). This is a problem that will arise frequently

in subsequent chapters, and it will prove convenient to derive the general results here.

We shall take the marginal and conditional distributions to be

p(x) = N
(

x|µ,Λ−1
)

(2.99)

p(y|x) = N
(

y|Ax+ b,L−1
)

(2.100)

where µ, A, and b are parameters governing the means, and Λ and L are precision

matrices. If x has dimensionalityM and y has dimensionalityD, then the matrixA

has size D × M .

First we find an expression for the joint distribution over x and y. To do this, we

define

z =

(

x

y

)

(2.101)

and then consider the log of the joint distribution

ln p(z) = ln p(x) + ln p(y|x)

= −
1

2
(x− µ)TΛ(x− µ)

−
1

2
(y −Ax− b)TL(y −Ax− b) + const (2.102)

where ‘const’ denotes terms independent of x and y. As before, we see that this is a

quadratic function of the components of z, and hence p(z) is Gaussian distribution.

To find the precision of this Gaussian, we consider the second order terms in (2.102),

which can be written as

−
1

2
xT(Λ+ATLA)x−

1

2
yTLy +

1

2
yTLAx+

1

2
xTATLy

= −
1

2

(

x

y

)T(

Λ+ATLA −ATL

−LA L

)(

x

y

)

= −
1

2
zTRz (2.103)

and so the Gaussian distribution over z has precision (inverse covariance) matrix

given by

R =

(

Λ+ATLA −ATL

−LA L

)

. (2.104)

The covariance matrix is found by taking the inverse of the precision, which can be

done using the matrix inversion formula (2.76) to giveExercise 2.29

cov[z] = R−1 =

(

Λ−1 Λ−1AT

AΛ−1 L−1 +AΛ−1AT

)

. (2.105)
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Similarly, we can find the mean of the Gaussian distribution over z by identify-

ing the linear terms in (2.102), which are given by

xTΛµ − xTATLb+ yTLb =

(

x

y

)T(

Λµ −ATLb

Lb

)

. (2.106)

Using our earlier result (2.71) obtained by completing the square over the quadratic

form of a multivariate Gaussian, we find that the mean of z is given by

E[z] = R−1

(

Λµ −ATLb

Lb

)

. (2.107)

Making use of (2.105), we then obtainExercise 2.30

E[z] =

(

µ

Aµ+ b

)

. (2.108)

Next we find an expression for the marginal distribution p(y) in which we have

marginalized over x. Recall that the marginal distribution over a subset of the com-

ponents of a Gaussian random vector takes a particularly simple form when ex-

pressed in terms of the partitioned covariance matrix. Specifically, its mean andSection 2.3

covariance are given by (2.92) and (2.93), respectively. Making use of (2.105) and

(2.108) we see that the mean and covariance of the marginal distribution p(y) are
given by

E[y] = Aµ+ b (2.109)

cov[y] = L−1 +AΛ−1AT. (2.110)

A special case of this result is whenA = I, in which case it reduces to the convolu-

tion of two Gaussians, for which we see that the mean of the convolution is the sum

of the mean of the two Gaussians, and the covariance of the convolution is the sum

of their covariances.

Finally, we seek an expression for the conditional p(x|y). Recall that the results
for the conditional distribution are most easily expressed in terms of the partitioned

precision matrix, using (2.73) and (2.75). Applying these results to (2.105) andSection 2.3

(2.108) we see that the conditional distribution p(x|y) has mean and covariance

given by

E[x|y] = (Λ+ATLA)−1
{

ATL(y − b) +Λµ

}

(2.111)

cov[x|y] = (Λ+ATLA)−1. (2.112)

The evaluation of this conditional can be seen as an example of Bayes’ theorem.

We can interpret the distribution p(x) as a prior distribution over x. If the variable

y is observed, then the conditional distribution p(x|y) represents the corresponding
posterior distribution over x. Having found the marginal and conditional distribu-

tions, we effectively expressed the joint distribution p(z) = p(x)p(y|x) in the form

p(x|y)p(y). These results are summarized below.
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Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-

bution for y given x in the form

p(x) = N (x|µ,Λ−1) (2.113)

p(y|x) = N (y|Ax+ b,L−1) (2.114)

the marginal distribution of y and the conditional distribution of x given y are

given by

p(y) = N (y|Aµ+ b,L−1 +AΛ−1AT) (2.115)

p(x|y) = N (x|Σ{ATL(y − b) +Λµ},Σ) (2.116)

where

Σ = (Λ+ATLA)−1. (2.117)

2.3.4 Maximum likelihood for the Gaussian

Given a data set X = (x1, . . . ,xN )
T in which the observations {xn} are as-

sumed to be drawn independently from a multivariate Gaussian distribution, we can

estimate the parameters of the distribution by maximum likelihood. The log likeli-

hood function is given by

ln p(X|µ,Σ) = −
ND

2
ln(2π)−

N

2
ln |Σ|−

1

2

N
∑

n=1

(xn−µ)TΣ−1(xn−µ). (2.118)

By simple rearrangement, we see that the likelihood function depends on the data set

only through the two quantities

N
∑

n=1

xn,

N
∑

n=1

xnx
T

n
. (2.119)

These are known as the sufficient statistics for the Gaussian distribution. Using

(C.19), the derivative of the log likelihood with respect to µ is given byAppendix C

∂

∂µ
ln p(X|µ,Σ) =

N
∑

n=1

Σ−1(xn − µ) (2.120)

and setting this derivative to zero, we obtain the solution for the maximum likelihood

estimate of the mean given by

µ
ML
=
1

N

N
∑

n=1

xn (2.121)



Appendix C. Properties of Matrices

In this appendix, we gather together some useful properties and identities involving

matrices and determinants. This is not intended to be an introductory tutorial, and

it is assumed that the reader is already familiar with basic linear algebra. For some

results, we indicate how to prove them, whereas in more complex cases we leave

the interested reader to refer to standard textbooks on the subject. In all cases, we

assume that inverses exist and that matrix dimensions are such that the formulae

are correctly defined. A comprehensive discussion of linear algebra can be found in

Golub and Van Loan (1996), and an extensive collection of matrix properties is given

by Lütkepohl (1996). Matrix derivatives are discussed in Magnus and Neudecker

(1999).

Basic Matrix Identities

A matrix A has elements Aij where i indexes the rows, and j indexes the columns.

We use IN to denote the N × N identity matrix (also called the unit matrix), and

where there is no ambiguity over dimensionality we simply use I. The transpose

matrixAT has elements (AT)ij = Aji. From the definition of transpose, we have

(AB)T = BTAT (C.1)

which can be verified by writing out the indices. The inverse of A, denoted A−1,

satisfies

AA−1 = A−1A = I. (C.2)

BecauseABB−1A−1 = I, we have

(AB)−1 = B−1A−1. (C.3)

Also we have (
AT

)
−1

=
(
A−1

)T
(C.4)

695
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which is easily proven by taking the transpose of (C.2) and applying (C.1).

A useful identity involving matrix inverses is the following

(P−1 +BTR−1B)−1BTR−1 = PBT(BPBT +R)−1. (C.5)

which is easily verified by right multiplying both sides by (BPBT +R). Suppose

that P has dimensionality N ×N whileR has dimensionalityM ×M , so thatB is

M ×N . Then ifM ≪ N , it will be much cheaper to evaluate the right-hand side of

(C.5) than the left-hand side. A special case that sometimes arises is

(I+AB)−1A = A(I+BA)−1. (C.6)

Another useful identity involving inverses is the following:

(A+BD−1C)−1 = A−1 −A−1B(D+CA−1B)−1CA−1 (C.7)

which is known as the Woodbury identity and which can be verified by multiplying

both sides by (A + BD−1C). This is useful, for instance, when A is large and

diagonal, and hence easy to invert, while B has many rows but few columns (and

conversely for C) so that the right-hand side is much cheaper to evaluate than the

left-hand side.

A set of vectors {a1, . . . ,aN} is said to be linearly independent if the relation∑
n
αnan = 0 holds only if all αn = 0. This implies that none of the vectors

can be expressed as a linear combination of the remainder. The rank of a matrix is

the maximum number of linearly independent rows (or equivalently the maximum

number of linearly independent columns).

Traces and Determinants

Trace and determinant apply to square matrices. The trace Tr(A) of a matrix A

is defined as the sum of the elements on the leading diagonal. By writing out the

indices, we see that

Tr(AB) = Tr(BA). (C.8)

By applying this formula multiple times to the product of three matrices, we see that

Tr(ABC) = Tr(CAB) = Tr(BCA) (C.9)

which is known as the cyclic property of the trace operator and which clearly extends

to the product of any number of matrices. The determinant |A| of an N ×N matrix

A is defined by

|A| =
∑

(±1)A1i1A2i2 · · ·ANiN (C.10)

in which the sum is taken over all products consisting of precisely one element from

each row and one element from each column, with a coefficient +1 or −1 according
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to whether the permutation i1i2 . . . iN is even or odd, respectively. Note that |I| = 1.
Thus, for a 2× 2 matrix, the determinant takes the form

|A| =

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21. (C.11)

The determinant of a product of two matrices is given by

|AB| = |A||B| (C.12)

as can be shown from (C.10). Also, the determinant of an inverse matrix is given by

∣∣A−1
∣∣ =

1

|A|
(C.13)

which can be shown by taking the determinant of (C.2) and applying (C.12).

IfA and B are matrices of size N ×M , then

∣∣IN +ABT
∣∣ =

∣∣IM +ATB
∣∣ . (C.14)

A useful special case is ∣∣IN + abT
∣∣ = 1 + aTb (C.15)

where a and b are N -dimensional column vectors.

Matrix Derivatives

Sometimes we need to consider derivatives of vectors and matrices with respect to

scalars. The derivative of a vector a with respect to a scalar x is itself a vector whose

components are given by (
∂a

∂x

)

i

=
∂ai

∂x
(C.16)

with an analogous definition for the derivative of a matrix. Derivatives with respect

to vectors and matrices can also be defined, for instance

(
∂x

∂a

)

i

=
∂x

∂ai
(C.17)

and similarly (
∂a

∂b

)

ij

=
∂ai

∂bj
. (C.18)

The following is easily proven by writing out the components

∂

∂x

(
xTa

)
=
∂

∂x

(
aTx

)
= a. (C.19)
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Similarly
∂

∂x
(AB) =

∂A

∂x
B+A

∂B

∂x
. (C.20)

The derivative of the inverse of a matrix can be expressed as

∂

∂x

(
A−1

)
= −A−1

∂A

∂x
A−1 (C.21)

as can be shown by differentiating the equation A−1A = I using (C.20) and then

right multiplying byA−1. Also

∂

∂x
ln |A| = Tr

(
A−1

∂A

∂x

)
(C.22)

which we shall prove later. If we choose x to be one of the elements ofA, we have

∂

∂Aij

Tr (AB) = Bji (C.23)

as can be seen by writing out the matrices using index notation. We can write this

result more compactly in the form

∂

∂A
Tr (AB) = BT. (C.24)

With this notation, we have the following properties

∂

∂A
Tr

(
ATB

)
= B (C.25)

∂

∂A
Tr(A) = I (C.26)

∂

∂A
Tr(ABAT) = A(B+BT) (C.27)

which can again be proven by writing out the matrix indices. We also have

∂

∂A
ln |A| =

(
A−1

)T
(C.28)

which follows from (C.22) and (C.26).

Eigenvector Equation

For a square matrixA of sizeM ×M , the eigenvector equation is defined by

Aui = λiui (C.29)
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for i = 1, . . . ,M , where ui is an eigenvector and λi is the corresponding eigenvalue.

This can be viewed as a set of M simultaneous homogeneous linear equations, and

the condition for a solution is that

|A− λiI| = 0 (C.30)

which is known as the characteristic equation. Because this is a polynomial of order

M in λi, it must haveM solutions (though these need not all be distinct). The rank

ofA is equal to the number of nonzero eigenvalues.

Of particular interest are symmetric matrices, which arise as covariance ma-

trices, kernel matrices, and Hessians. Symmetric matrices have the property that

Aij = Aji, or equivalentlyAT = A. The inverse of a symmetric matrix is also sym-

metric, as can be seen by taking the transpose of A−1A = I and using AA−1 = I
together with the symmetry of I.

In general, the eigenvalues of a matrix are complex numbers, but for symmetric

matrices the eigenvalues λi are real. This can be seen by first left multiplying (C.29)

by (u⋆
i )
T, where ⋆ denotes the complex conjugate, to give

(u⋆
i )
T
Aui = λi (u

⋆
i )
T
ui. (C.31)

Next we take the complex conjugate of (C.29) and left multiply by uTi to give

uTi Au
⋆
i = λ⋆

iu
T

i u
⋆
i . (C.32)

where we have used A⋆ = A because we consider only real matrices A. Taking

the transpose of the second of these equations, and using AT = A, we see that the

left-hand sides of the two equations are equal, and hence that λ⋆
i = λi and so λi

must be real.

The eigenvectors ui of a real symmetric matrix can be chosen to be orthonormal

(i.e., orthogonal and of unit length) so that

uTi uj = Iij (C.33)

where Iij are the elements of the identity matrix I. To show this, we first left multiply

(C.29) by uTj to give

uTjAui = λiu
T

j ui (C.34)

and hence, by exchange of indices, we have

uTi Auj = λju
T

i uj . (C.35)

We now take the transpose of the second equation and make use of the symmetry

propertyAT = A, and then subtract the two equations to give

(λi − λj)u
T

i uj = 0. (C.36)

Hence, for λi (= λj , we have uTi uj = 0, and hence ui and uj are orthogonal. If the

two eigenvalues are equal, then any linear combination αui + βuj is also an eigen-

vector with the same eigenvalue, so we can select one linear combination arbitrarily,
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and then choose the second to be orthogonal to the first (it can be shown that the de-

generate eigenvectors are never linearly dependent). Hence the eigenvectors can be

chosen to be orthogonal, and by normalizing can be set to unit length. Because there

are M eigenvalues, the corresponding M orthogonal eigenvectors form a complete

set and so any M -dimensional vector can be expressed as a linear combination of

the eigenvectors.

We can take the eigenvectors ui to be the columns of an M × M matrix U,

which from orthonormality satisfies

UTU = I. (C.37)

Such a matrix is said to be orthogonal. Interestingly, the rows of this matrix are also

orthogonal, so that UUT = I. To show this, note that (C.37) implies UTUU−1 =
U−1 = UT and soUU−1 = UUT = I. Using (C.12), it also follows that |U| = 1.

The eigenvector equation (C.29) can be expressed in terms ofU in the form

AU = UΛ (C.38)

where Λ is an M ×M diagonal matrix whose diagonal elements are given by the

eigenvalues λi.

If we consider a column vector x that is transformed by an orthogonal matrixU

to give a new vector

x̃ = Ux (C.39)

then the length of the vector is preserved because

x̃Tx̃ = xTUTUx = xTx (C.40)

and similarly the angle between any two such vectors is preserved because

x̃Tỹ = xTUTUy = xTy. (C.41)

Thus, multiplication by U can be interpreted as a rigid rotation of the coordinate

system.

From (C.38), it follows that

UTAU = Λ (C.42)

and because Λ is a diagonal matrix, we say that the matrixA is diagonalized by the

matrixU. If we left multiply byU and right multiply byUT, we obtain

A = UΛUT (C.43)

Taking the inverse of this equation, and using (C.3) together with U−1 = UT, we

have

A−1 = UΛ−1UT. (C.44)
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These last two equations can also be written in the form

A =

M∑

i=1

λiuiu
T

i (C.45)

A−1 =

M∑

i=1

1

λi

uiu
T

i . (C.46)

If we take the determinant of (C.43), and use (C.12), we obtain

|A| =

M∏

i=1

λi. (C.47)

Similarly, taking the trace of (C.43), and using the cyclic property (C.8) of the trace

operator together withUTU = I, we have

Tr(A) =

M∑

i=1

λi. (C.48)

We leave it as an exercise for the reader to verify (C.22) by making use of the results

(C.33), (C.45), (C.46), and (C.47).

A matrixA is said to be positive definite, denoted byA ≻ 0, ifwTAw > 0 for

all values of the vector w. Equivalently, a positive definite matrix has λi > 0 for all

of its eigenvalues (as can be seen by setting w to each of the eigenvectors in turn,

and by noting that an arbitrary vector can be expanded as a linear combination of the

eigenvectors). Note that positive definite is not the same as all the elements being

positive. For example, the matrix

(
1 2
3 4

)
(C.49)

has eigenvalues λ1 ≃ 5.37 and λ2 ≃ −0.37. A matrix is said to be positive semidef-

inite if wTAw � 0 holds for all values of w, which is denoted A + 0, and is

equivalent to λi � 0.


