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Figure 6.4 Samples from Gaus-
sian processes for a ‘Gaussian’ ker-
nel (left) and an exponential kernel
(right).
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6.4.2 Gaussian processes for regression

In order to apply Gaussian process models to the problem of regression, we need

to take account of the noise on the observed target values, which are given by

tn = yn + ǫn (6.57)

where yn = y(xn), and ǫn is a random noise variable whose value is chosen inde-

pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β
−1) (6.58)

where β is a hyperparameter representing the precision of the noise. Because the

noise is independent for each data point, the joint distribution of the target values

t = (t1, . . . , tN )
T conditioned on the values of y = (y1, . . . , yN )

T is given by an

isotropic Gaussian of the form

p(t|y) = N (t|y, β−1IN ) (6.59)

where IN denotes theN ×N unit matrix. From the definition of a Gaussian process,

the marginal distribution p(y) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrixK so that

p(y) = N (y|0,K). (6.60)

The kernel function that determines K is typically chosen to express the property

that, for points xn and xm that are similar, the corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.

In order to find the marginal distribution p(t), conditioned on the input values
x1, . . . ,xN , we need to integrate over y. This can be done by making use of the
results from Section 2.3.3 for the linear-Gaussian model. Using (2.115), we see that

the marginal distribution of t is given by

p(t) =

∫

p(t|y)p(y) dy = N (t|0,C) (6.61)
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where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + β−1δnm. (6.62)

This result reflects the fact that the two Gaussian sources of randomness, namely

that associated with y(x) and that associated with ǫ, are independent and so their
covariances simply add.

One widely used kernel function for Gaussian process regression is given by the

exponential of a quadratic form, with the addition of constant and linear terms to

give

k(xn,xm) = θ0 exp

{

−
θ1
2

‖xn − xm‖2
}

+ θ2 + θ3x
T
nxm. (6.63)

Note that the term involving θ3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values

of the parameters θ0, . . . , θ3 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined

by (6.61).

So far, we have used the Gaussian process viewpoint to build a model of the

joint distribution over sets of data points. Our goal in regression, however, is to

make predictions of the target variables for new inputs, given a set of training data.

Let us suppose that tN = (t1, . . . , tN )
T, corresponding to input values x1, . . . ,xN ,

comprise the observed training set, and our goal is to predict the target variable tN+1

for a new input vector xN+1. This requires that we evaluate the predictive distri-

bution p(tN+1|tN ). Note that this distribution is conditioned also on the variables
x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these

conditioning variables explicitly.

To find the conditional distribution p(tN+1|t), we begin by writing down the

joint distribution p(tN+1), where tN+1 denotes the vector (t1, . . . , tN , tN+1)
T. We

then apply the results from Section 2.3.1 to obtain the required conditional distribu-

tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,CN+1) (6.64)

where CN+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from

Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition

the covariance matrix as follows

CN+1 =

(

CN k

kT c

)

(6.65)

whereCN is theN ×N covariance matrix with elements given by (6.62) for n,m =
1, . . . , N , the vector k has elements k(xn,xN+1) for n = 1, . . . , N , and the scalar
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Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above
each plot denotes (θ0, θ1, θ2, θ3).

c = k(xN+1,xN+1)+β−1. Using the results (2.81) and (2.82), we see that the con-
ditional distribution p(tN+1|t) is a Gaussian distribution with mean and covariance
given by

m(xN+1) = kTC−1N t (6.66)

σ2(xN+1) = c − kTC−1N k. (6.67)

These are the key results that define Gaussian process regression. Because the vector

k is a function of the test point input value xN+1, we see that the predictive distribu-

tion is a Gaussian whose mean and variance both depend on xN+1. An example of

Gaussian process regression is shown in Figure 6.8.

The only restriction on the kernel function is that the covariance matrix given by

(6.62) must be positive definite. If λi is an eigenvalue ofK, then the corresponding

eigenvalue of C will be λi + β−1. It is therefore sufficient that the kernel matrix
k(xn,xm) be positive semidefinite for any pair of points xn and xm, so that λi � 0,
because any eigenvalue λi that is zero will still give rise to a positive eigenvalue

for C because β > 0. This is the same restriction on the kernel function discussed
earlier, and so we can again exploit all of the techniques in Section 6.2 to construct
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Figure 6.6 Illustration of the sampling of data
points {tn} from a Gaussian process.
The blue curve shows a sample func-
tion from the Gaussian process prior
over functions, and the red points
show the values of yn obtained by
evaluating the function at a set of in-
put values {xn}. The correspond-
ing values of {tn}, shown in green,
are obtained by adding independent
Gaussian noise to each of the {yn}.
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suitable kernels.

Note that the mean (6.66) of the predictive distribution can be written, as a func-

tion of xN+1, in the form

m(xN+1) =

N
∑

n=1

ank(xn,xN+1) (6.68)

where an is the nth component of C−1N t. Thus, if the kernel function k(xn,xm)
depends only on the distance ‖xn − xm‖, then we obtain an expansion in radial

basis functions.

The results (6.66) and (6.67) define the predictive distribution for Gaussian pro-

cess regression with an arbitrary kernel function k(xn,xm). In the particular case in
which the kernel function k(x,x′) is defined in terms of a finite set of basis functions,
we can derive the results obtained previously in Section 3.3.2 for linear regression

starting from the Gaussian process viewpoint.Exercise 6.21

For such models, we can therefore obtain the predictive distribution either by

taking a parameter space viewpoint and using the linear regression result or by taking

a function space viewpoint and using the Gaussian process result.

The central computational operation in using Gaussian processes will involve

the inversion of a matrix of size N × N , for which standard methods require O(N3)
computations. By contrast, in the basis function model we have to invert a matrix

SN of size M × M , which has O(M3) computational complexity. Note that for

both viewpoints, the matrix inversion must be performed once for the given training

set. For each new test point, both methods require a vector-matrix multiply, which

has cost O(N2) in the Gaussian process case and O(M2) for the linear basis func-
tion model. If the number M of basis functions is smaller than the number N of

data points, it will be computationally more efficient to work in the basis function
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Figure 6.7 Illustration of the mechanism of
Gaussian process regression for
the case of one training point and
one test point, in which the red el-
lipses show contours of the joint dis-
tribution p(t1, t2). Here t1 is the
training data point, and condition-
ing on the value of t1, correspond-
ing to the vertical blue line, we ob-
tain p(t2|t1) shown as a function of
t2 by the green curve. t1

t2

m(x2)
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framework. However, an advantage of a Gaussian processes viewpoint is that we

can consider covariance functions that can only be expressed in terms of an infinite

number of basis functions.

For large training data sets, however, the direct application of Gaussian process

methods can become infeasible, and so a range of approximation schemes have been

developed that have better scaling with training set size than the exact approach

(Gibbs, 1997; Tresp, 2001; Smola and Bartlett, 2001; Williams and Seeger, 2001;

Csató and Opper, 2002; Seeger et al., 2003). Practical issues in the application of

Gaussian processes are discussed in Bishop and Nabney (2008).

We have introduced Gaussian process regression for the case of a single tar-

get variable. The extension of this formalism to multiple target variables, known

as co-kriging (Cressie, 1993), is straightforward. Various other extensions of Gaus-Exercise 6.23

Figure 6.8 Illustration of Gaussian process re-
gression applied to the sinusoidal
data set in Figure A.6 in which the
three right-most data points have
been omitted. The green curve
shows the sinusoidal function from
which the data points, shown in
blue, are obtained by sampling and
addition of Gaussian noise. The
red line shows the mean of the
Gaussian process predictive distri-
bution, and the shaded region cor-
responds to plus and minus two
standard deviations. Notice how
the uncertainty increases in the re-
gion to the right of the data points.
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sian process regression have also been considered, for purposes such as modelling

the distribution over low-dimensional manifolds for unsupervised learning (Bishop

et al., 1998a) and the solution of stochastic differential equations (Graepel, 2003).

6.4.3 Learning the hyperparameters

The predictions of a Gaussian process model will depend, in part, on the choice

of covariance function. In practice, rather than fixing the covariance function, we

may prefer to use a parametric family of functions and then infer the parameter

values from the data. These parameters govern such things as the length scale of the

correlations and the precision of the noise and correspond to the hyperparameters in

a standard parametric model.

Techniques for learning the hyperparameters are based on the evaluation of the

likelihood function p(t|θ)where θ denotes the hyperparameters of the Gaussian pro-
cess model. The simplest approach is to make a point estimate of θ by maximizing

the log likelihood function. Because θ represents a set of hyperparameters for the

regression problem, this can be viewed as analogous to the type 2 maximum like-

lihood procedure for linear regression models. Maximization of the log likelihoodSection 3.5

can be done using efficient gradient-based optimization algorithms such as conjugate

gradients (Fletcher, 1987; Nocedal and Wright, 1999; Bishop and Nabney, 2008).

The log likelihood function for a Gaussian process regression model is easily

evaluated using the standard form for a multivariate Gaussian distribution, giving

ln p(t|θ) = −
1

2
ln |CN | −

1

2
tTC−1N t −

N

2
ln(2π). (6.69)

For nonlinear optimization, we also need the gradient of the log likelihood func-

tion with respect to the parameter vector θ. We shall assume that evaluation of the

derivatives of CN is straightforward, as would be the case for the covariance func-

tions considered in this chapter. Making use of the result (C.21) for the derivative of

C−1N , together with the result (C.22) for the derivative of ln |CN |, we obtain

∂

∂θi
ln p(t|θ) = −

1

2
Tr

(

C−1N
∂CN

∂θi

)

+
1

2
tTC−1N

∂CN

∂θi
C−1N t. (6.70)

Because ln p(t|θ) will in general be a nonconvex function, it can have multiple max-
ima.

It is straightforward to introduce a prior over θ and to maximize the log poste-

rior using gradient-based methods. In a fully Bayesian treatment, we need to evaluate

marginals over θ weighted by the product of the prior p(θ) and the likelihood func-
tion p(t|θ). In general, however, exact marginalization will be intractable, and we
must resort to approximations.

The Gaussian process regression model gives a predictive distribution whose

mean and variance are functions of the input vector x. However, we have assumed

that the contribution to the predictive variance arising from the additive noise, gov-

erned by the parameter β, is a constant. For some problems, known as heteroscedas-
tic, the noise variance itself will also depend on x. To model this, we can extend the
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Figure 6.9 Samples from the ARD
prior for Gaussian processes, in
which the kernel function is given by
(6.71). The left plot corresponds to
η1 = η2 = 1, and the right plot cor-
responds to η1 = 1, η2 = 0.01.

Gaussian process framework by introducing a second Gaussian process to represent

the dependence of β on the input x (Goldberg et al., 1998). Because β is a variance,

and hence nonnegative, we use the Gaussian process to model lnβ(x).

6.4.4 Automatic relevance determination

In the previous section, we saw how maximum likelihood could be used to de-

termine a value for the correlation length-scale parameter in a Gaussian process.

This technique can usefully be extended by incorporating a separate parameter for

each input variable (Rasmussen and Williams, 2006). The result, as we shall see, is

that the optimization of these parameters by maximum likelihood allows the relative

importance of different inputs to be inferred from the data. This represents an exam-

ple in the Gaussian process context of automatic relevance determination, or ARD,

which was originally formulated in the framework of neural networks (MacKay,

1994; Neal, 1996). The mechanism by which appropriate inputs are preferred is

discussed in Section 7.2.2.

Consider a Gaussian process with a two-dimensional input space x = (x1, x2),
having a kernel function of the form

k(x,x′) = θ0 exp

{

−
1

2

2
∑

i=1

ηi(xi − x′i)
2

}

. (6.71)

Samples from the resulting prior over functions y(x) are shown for two different

settings of the precision parameters ηi in Figure 6.9. We see that, as a particu-

lar parameter ηi becomes small, the function becomes relatively insensitive to the
corresponding input variable xi. By adapting these parameters to a data set using
maximum likelihood, it becomes possible to detect input variables that have little

effect on the predictive distribution, because the corresponding values of ηi will be
small. This can be useful in practice because it allows such inputs to be discarded.

ARD is illustrated using a simple synthetic data set having three inputs x1, x2 and x3

(Nabney, 2002) in Figure 6.10. The target variable t, is generated by sampling 100
values of x1 from a Gaussian, evaluating the function sin(2πx1), and then adding
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Figure 6.10 Illustration of automatic rele-
vance determination in a Gaus-
sian process for a synthetic prob-
lem having three inputs x1, x2,
and x3, for which the curves
show the corresponding values of
the hyperparameters η1 (red), η2
(green), and η3 (blue) as a func-
tion of the number of iterations
when optimizing the marginal
likelihood. Details are given in
the text. Note the logarithmic
scale on the vertical axis.
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Gaussian noise. Values of x2 are given by copying the corresponding values of x1

and adding noise, and values of x3 are sampled from an independent Gaussian dis-

tribution. Thus x1 is a good predictor of t, x2 is a more noisy predictor of t, and x3

has only chance correlations with t. The marginal likelihood for a Gaussian process
with ARD parameters η1, η2, η3 is optimized using the scaled conjugate gradients

algorithm. We see from Figure 6.10 that η1 converges to a relatively large value, η2
converges to a much smaller value, and η3 becomes very small indicating that x3 is

irrelevant for predicting t.
The ARD framework is easily incorporated into the exponential-quadratic kernel

(6.63) to give the following form of kernel function, which has been found useful for

applications of Gaussian processes to a range of regression problems

k(xn,xm) = θ0 exp

{

−
1

2

D
∑

i=1

ηi(xni − xmi)
2

}

+ θ2 + θ3

D
∑

i=1

xnixmi (6.72)

where D is the dimensionality of the input space.

6.4.5 Gaussian processes for classification

In a probabilistic approach to classification, our goal is to model the posterior

probabilities of the target variable for a new input vector, given a set of training

data. These probabilities must lie in the interval (0, 1), whereas a Gaussian process
model makes predictions that lie on the entire real axis. However, we can easily

adapt Gaussian processes to classification problems by transforming the output of

the Gaussian process using an appropriate nonlinear activation function.

Consider first the two-class problem with a target variable t ∈ {0, 1}. If we de-
fine a Gaussian process over a function a(x) and then transform the function using

a logistic sigmoid y = σ(a), given by (4.59), then we will obtain a non-Gaussian
stochastic process over functions y(x) where y ∈ (0, 1). This is illustrated for the
case of a one-dimensional input space in Figure 6.11 in which the probability distri-
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Figure 6.11 The left plot shows a sample from a Gaussian process prior over functions a(x), and the right plot
shows the result of transforming this sample using a logistic sigmoid function.

bution over the target variable t is then given by the Bernoulli distribution

p(t|a) = σ(a)t(1− σ(a))1−t. (6.73)

As usual, we denote the training set inputs by x1, . . . ,xN with corresponding

observed target variables t = (t1, . . . , tN )
T. We also consider a single test point

xN+1 with target value tN+1. Our goal is to determine the predictive distribution

p(tN+1|t), where we have left the conditioning on the input variables implicit. To do
this we introduce a Gaussian process prior over the vector aN+1, which has compo-

nents a(x1), . . . , a(xN+1). This in turn defines a non-Gaussian process over tN+1,

and by conditioning on the training data tN we obtain the required predictive distri-

bution. The Gaussian process prior for aN+1 takes the form

p(aN+1) = N (aN+1|0,CN+1). (6.74)

Unlike the regression case, the covariance matrix no longer includes a noise term

because we assume that all of the training data points are correctly labelled. How-

ever, for numerical reasons it is convenient to introduce a noise-like term governed

by a parameter ν that ensures that the covariance matrix is positive definite. Thus

the covariance matrix CN+1 has elements given by

C(xn,xm) = k(xn,xm) + νδnm (6.75)

where k(xn,xm) is any positive semidefinite kernel function of the kind considered
in Section 6.2, and the value of ν is typically fixed in advance. We shall assume that

the kernel function k(x,x′) is governed by a vector θ of parameters, and we shall

later discuss how θ may be learned from the training data.

For two-class problems, it is sufficient to predict p(tN+1 = 1|tN ) because the
value of p(tN+1 = 0|tN ) is then given by 1 − p(tN+1 = 1|tN ). The required
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predictive distribution is given by

p(tN+1 = 1|tN ) =

∫

p(tN+1 = 1|aN+1)p(aN+1|tN ) daN+1 (6.76)

where p(tN+1 = 1|aN+1) = σ(aN+1).
This integral is analytically intractable, and so may be approximated using sam-

pling methods (Neal, 1997). Alternatively, we can consider techniques based on

an analytical approximation. In Section 4.5.2, we derived the approximate formula

(4.153) for the convolution of a logistic sigmoid with a Gaussian distribution. We

can use this result to evaluate the integral in (6.76) provided we have a Gaussian

approximation to the posterior distribution p(aN+1|tN ). The usual justification for a
Gaussian approximation to a posterior distribution is that the true posterior will tend

to a Gaussian as the number of data points increases as a consequence of the central

limit theorem. In the case of Gaussian processes, the number of variables grows withSection 2.3

the number of data points, and so this argument does not apply directly. However, if

we consider increasing the number of data points falling in a fixed region of x space,

then the corresponding uncertainty in the function a(x) will decrease, again leading
asymptotically to a Gaussian (Williams and Barber, 1998).

Three different approaches to obtaining a Gaussian approximation have been

considered. One technique is based on variational inference (Gibbs and MacKay,Section 10.1

2000) and makes use of the local variational bound (10.144) on the logistic sigmoid.

This allows the product of sigmoid functions to be approximated by a product of

Gaussians thereby allowing the marginalization over aN to be performed analyti-

cally. The approach also yields a lower bound on the likelihood function p(tN |θ).
The variational framework for Gaussian process classification can also be extended

to multiclass (K > 2) problems by using a Gaussian approximation to the softmax
function (Gibbs, 1997).

A second approach uses expectation propagation (Opper and Winther, 2000b;Section 10.7

Minka, 2001b; Seeger, 2003). Because the true posterior distribution is unimodal, as

we shall see shortly, the expectation propagation approach can give good results.

6.4.6 Laplace approximation

The third approach to Gaussian process classification is based on the Laplace

approximation, which we now consider in detail. In order to evaluate the predictiveSection 4.4

distribution (6.76), we seek a Gaussian approximation to the posterior distribution

over aN+1, which, using Bayes’ theorem, is given by

p(aN+1|tN ) =

∫

p(aN+1,aN |tN ) daN

=
1

p(tN )

∫

p(aN+1,aN )p(tN |aN+1,aN ) daN

=
1

p(tN )

∫

p(aN+1|aN )p(aN )p(tN |aN ) daN

=

∫

p(aN+1|aN )p(aN |tN ) daN (6.77)
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where we have used p(tN |aN+1,aN ) = p(tN |aN ). The conditional distribution

p(aN+1|aN ) is obtained by invoking the results (6.66) and (6.67) for Gaussian pro-
cess regression, to give

p(aN+1|aN ) = N (aN+1|k
TC−1N aN , c − kTC−1N k). (6.78)

We can therefore evaluate the integral in (6.77) by finding a Laplace approximation

for the posterior distribution p(aN |tN ), and then using the standard result for the

convolution of two Gaussian distributions.

The prior p(aN ) is given by a zero-mean Gaussian process with covariance ma-
trix CN , and the data term (assuming independence of the data points) is given by

p(tN |aN ) =

N
∏

n=1

σ(an)
tn(1− σ(an))

1−tn =

N
∏

n=1

eantnσ(−an). (6.79)

We then obtain the Laplace approximation by Taylor expanding the logarithm of

p(aN |tN ), which up to an additive normalization constant is given by the quantity

Ψ(aN ) = ln p(aN ) + ln p(tN |aN )

= −
1

2
aTNC

−1

N aN −
N

2
ln(2π)−

1

2
ln |CN |+ tTNaN

−

N
∑

n=1

ln(1 + ean) + const. (6.80)

First we need to find the mode of the posterior distribution, and this requires that we

evaluate the gradient of Ψ(aN ), which is given by

∇Ψ(aN ) = tN − σN − C−1N aN (6.81)

where σN is a vector with elements σ(an). We cannot simply find the mode by

setting this gradient to zero, because σN depends nonlinearly on aN , and so we

resort to an iterative scheme based on the Newton-Raphson method, which gives rise

to an iterative reweighted least squares (IRLS) algorithm. This requires the secondSection 4.3.3

derivatives of Ψ(aN ), which we also require for the Laplace approximation anyway,
and which are given by

∇∇Ψ(aN ) = −WN − C−1N (6.82)

whereWN is a diagonal matrix with elements σ(an)(1− σ(an)), and we have used
the result (4.88) for the derivative of the logistic sigmoid function. Note that these

diagonal elements lie in the range (0, 1/4), and hence WN is a positive definite

matrix. Because CN (and hence its inverse) is positive definite by construction, and

because the sum of two positive definite matrices is also positive definite, we seeExercise 6.24

that the Hessian matrix A = −∇∇Ψ(aN ) is positive definite and so the posterior
distribution p(aN |tN ) is log convex and therefore has a single mode that is the global
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maximum. The posterior distribution is not Gaussian, however, because the Hessian

is a function of aN .

Using the Newton-Raphson formula (4.92), the iterative update equation for aN
is given byExercise 6.25

anewN = CN (I+WNCN )
−1 {tN − σN +WNaN} . (6.83)

These equations are iterated until they converge to the mode which we denote by

a⋆N . At the mode, the gradient ∇Ψ(aN ) will vanish, and hence a
⋆
N will satisfy

a⋆N = CN (tN − σN ). (6.84)

Once we have found the mode a⋆N of the posterior, we can evaluate the Hessian

matrix given by

H = −∇∇Ψ(aN ) =WN +C−1N (6.85)

where the elements ofWN are evaluated using a⋆N . This defines our Gaussian ap-

proximation to the posterior distribution p(aN |tN ) given by

q(aN ) = N (aN |a⋆N ,H−1). (6.86)

We can now combine this with (6.78) and hence evaluate the integral (6.77). Because

this corresponds to a linear-Gaussian model, we can use the general result (2.115) to

giveExercise 6.26

E[aN+1|tN ] = kT(tN − σN ) (6.87)

var[aN+1|tN ] = c − kT(W−1

N +CN )
−1k. (6.88)

Now that we have a Gaussian distribution for p(aN+1|tN ), we can approximate
the integral (6.76) using the result (4.153). As with the Bayesian logistic regression

model of Section 4.5, if we are only interested in the decision boundary correspond-

ing to p(tN+1|tN ) = 0.5, then we need only consider the mean and we can ignore
the effect of the variance.

We also need to determine the parameters θ of the covariance function. One

approach is to maximize the likelihood function given by p(tN |θ) for which we need
expressions for the log likelihood and its gradient. If desired, suitable regularization

terms can also be added, leading to a penalized maximum likelihood solution. The

likelihood function is defined by

p(tN |θ) =

∫

p(tN |aN )p(aN |θ) daN . (6.89)

This integral is analytically intractable, so again we make use of the Laplace approx-

imation. Using the result (4.135), we obtain the following approximation for the log

of the likelihood function

ln p(tN |θ) = Ψ(a⋆N )−
1

2
ln |WN +C−1N |+

N

2
ln(2π) (6.90)
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where Ψ(a⋆N ) = ln p(a⋆N |θ) + ln p(tN |a⋆N ). We also need to evaluate the gradient

of ln p(tN |θ) with respect to the parameter vector θ. Note that changes in θ will

cause changes in a⋆N , leading to additional terms in the gradient. Thus, when we

differentiate (6.90) with respect to θ, we obtain two sets of terms, the first arising

from the dependence of the covariance matrix CN on θ, and the rest arising from

dependence of a⋆N on θ.

The terms arising from the explicit dependence on θ can be found by using

(6.80) together with the results (C.21) and (C.22), and are given by

∂ ln p(tN |θ)

∂θj
=

1

2
a⋆TN C−1N

∂CN

∂θj
C−1N a⋆N

−
1

2
Tr

[

(I+CNWN )
−1WN

∂CN

∂θj

]

. (6.91)

To compute the terms arising from the dependence of a⋆N on θ, we note that

the Laplace approximation has been constructed such that Ψ(aN ) has zero gradient
at aN = a⋆N , and so Ψ(a

⋆
N ) gives no contribution to the gradient as a result of its

dependence on a⋆N . This leaves the following contribution to the derivative with

respect to a component θj of θ

−
1

2

N
∑

n=1

∂ ln |WN +C−1N |

∂a⋆n

∂a⋆n
∂θj

= −
1

2

N
∑

n=1

[

(I+CNWN )
−1CN

]

nn
σ⋆n(1− σ⋆n)(1− 2σ⋆n)

∂a⋆n
∂θj

(6.92)

where σ⋆n = σ(a⋆n), and again we have used the result (C.22) together with the

definition ofWN . We can evaluate the derivative of a⋆N with respect to θj by differ-
entiating the relation (6.84) with respect to θj to give

∂a⋆n
∂θj

=
∂CN

∂θj
(tN − σN )− CNWN

∂a⋆n
∂θj

. (6.93)

Rearranging then gives

∂a⋆n
∂θj

= (I+WNCN )
−1 ∂CN

∂θj
(tN − σN ). (6.94)

Combining (6.91), (6.92), and (6.94), we can evaluate the gradient of the log

likelihood function, which can be used with standard nonlinear optimization algo-

rithms in order to determine a value for θ.

We can illustrate the application of the Laplace approximation for Gaussian pro-

cesses using the synthetic two-class data set shown in Figure 6.12. Extension of theAppendix A

Laplace approximation to Gaussian processes involving K > 2 classes, using the
softmax activation function, is straightforward (Williams and Barber, 1998).
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Figure 6.12 Illustration of the use of a Gaussian process for classification, showing the data on the left together
with the optimal decision boundary from the true distribution in green, and the decision boundary from the
Gaussian process classifier in black. On the right is the predicted posterior probability for the blue and red
classes together with the Gaussian process decision boundary.

6.4.7 Connection to neural networks

We have seen that the range of functions which can be represented by a neural

network is governed by the number M of hidden units, and that, for sufficiently

large M , a two-layer network can approximate any given function with arbitrary

accuracy. In the framework of maximum likelihood, the number of hidden units

needs to be limited (to a level dependent on the size of the training set) in order

to avoid over-fitting. However, from a Bayesian perspective it makes little sense to

limit the number of parameters in the network according to the size of the training

set.

In a Bayesian neural network, the prior distribution over the parameter vector

w, in conjunction with the network function f(x,w), produces a prior distribution
over functions from y(x) where y is the vector of network outputs. Neal (1996)

has shown that, for a broad class of prior distributions over w, the distribution of

functions generated by a neural network will tend to a Gaussian process in the limit

M → ∞. It should be noted, however, that in this limit the output variables of the

neural network become independent. One of the great merits of neural networks is

that the outputs share the hidden units and so they can ‘borrow statistical strength’

from each other, that is, the weights associated with each hidden unit are influenced

by all of the output variables not just by one of them. This property is therefore lost

in the Gaussian process limit.

We have seen that a Gaussian process is determined by its covariance (kernel)

function. Williams (1998) has given explicit forms for the covariance in the case of

two specific choices for the hidden unit activation function (probit and Gaussian).

These kernel functions k(x,x′) are nonstationary, i.e. they cannot be expressed as
a function of the difference x − x′, as a consequence of the Gaussian weight prior

being centred on zero which breaks translation invariance in weight space.


